• Title/Summary/Keyword: Vapor quality

Search Result 595, Processing Time 0.025 seconds

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.

Improvement of Engine Stall by Load Increment on Tracked Armored Vehicles (부하증가로 인한 궤도형 장갑차의 엔진꺼짐현상 개선)

  • Moon, Tae-Sang;Kim, Kyungro;Lee, Yuki;Kang, Taewoo;Kim, Jaekyu;Kim, Seongil;Park, Bongsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.492-497
    • /
    • 2015
  • Currently, there are many kinds of tracked armored vehicles in service and they have encountered various environment and situations. So there are many obstacles to operate them improperly such as an engine stall. The causes of engine stall are an insufficient fueling, a mixture of air-fuel or vapor lock, and load increment which results from a rapid steering or increasing a viscosity of lubricant by low temperature. In this paper, engine stall by load increment due to a rapid steering or increasing of lubricant viscosity on tracked armored vehicles is analyzed, the ways to prevent it are applied, and their degrees of improvement are evaluated.

Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis (바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향)

  • Kim, Jae-Kon;Park, Jo Yong;Yim, Eui Soon;Ha, Jong Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.453-465
    • /
    • 2014
  • The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced by rapidly heating biomass to intermediate temperature ($450{\sim}600^{\circ}C$) in the absence of any external oxygen followed by rapid quenching of the resulting vapor. Bio-oil can be produced in weight yield maximum 75 wt% of the original dry biomass and bio-oils typically contain 60-75% of the initial energy of the biomass. In this study, it is described focusing on the characterization of feedstock, production principle of bio-oil, bio-oil's property and it's application sector.

Current status of gem-quality laboratory-grown diamond (보석용 합성 다이아몬드의 현황)

  • Choi, Hyun-min;Kim, Young-chool;Seok, Jeong-won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.159-167
    • /
    • 2022
  • In the past few decade years, laboratory-grown diamonds, also known as synthetic diamonds usually, have become more and more prosperous in the global diamond market. There are two main crystal growth processes of the gem-quality laboratory-grown diamond, the high pressure and high temperature (HPHT) and chemical vapor deposition (CVD). Synthetic gem diamonds grown by the HPHT press have been commercially available since the mid-1990s. Today, significant amounts of gem-quality colorless HPHT laboratory-grown diamonds have been producing for the jewelry industry. In the last several years, the CVD laboratory-grown diamonds have been gaining popularity in the market. In 2021, the CVD production rose and there are expectations that the trend would move upward continuously. This article presents information about the current status of laboratory-grown diamonds, lower cost compared to natural diamonds, market share, color distribution, spectroscopic properties of laboratory-grown diamonds, and so on.

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD (Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석)

  • Kim, Sun-Woon;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire

  • Kim, Dae-sik;Kwon, Jun-hyuck;Jhin, Junggeun;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.208-213
    • /
    • 2018
  • Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.

A Study on the Damage of Flame caused by the Vapor Cloud Explosion in LPG Filling Station (LPG충전소에서 증기운폭발에 의한 화염의 피해에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.53-60
    • /
    • 2010
  • LPG(Liquefied Petroleum Gas) vehicles in metropolitan area are being applied to improve air quality and have been proven effective for the reduction of air pollutant. In addition, LPG demand is growing rapidly as an environmentally friendly energy source and its gas station is also increasing every year. Consequently, this study tries to find out the influence of flame caused by the VCE(Vapor Cloud Explosion) in filling station on the adjacent combustibles and people by simulating relevant quantity of TNT. In addition, the damage estimation was conducted by using API regulations. If the scale of the radiation heat is known by calculating the distance of flame influence from the explosion site, the damage from the site can be easily estimated. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analyze, the spot which is 30m away from the flame has 100% of the damage probability by the first-degree burn, 99.2% of the damage probability by the second-degree burn and 93.4% of the death probability by the fire.

ESTIMATION OF PRECIPITABLE WATER VAPOR USING THE GPS (GPS를 이용한 대류권의 수증기량 측정)

  • 문용진;최규홍;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • The radio waves transmitted from GPS satellites is delayed by the troposphere as they propagate to Earth-based GPS receivers. The troposphere delay is usually divided into two parts, the dry delay due to the atmospheric gases and the wet delay due to the water vapor. In this study for the month of May in 1998 the GPS data from two stations(Taejon, Suwon) were used to estimate the total troposphere delay in the zenith direction by the least square method. The dry delay in the zenith direction can be evaluated by using surface pressure values at the station, then the zenith wet delay is obtained by removing the zenith dry delay from the total delay. The zenith wet delay is strongly correlated with the total precipitable water. The quality of the estimate has been assessed by comparison with radiosonde data at Osan. We found the food agreement in precipitable water of the GPS estimates and the radiosonde data. The standard deviation of the difference of the difference between the GPS and radiosonde observations was 3.68mm at Suwon.

  • PDF

A Study on the Dielectric Characteristics and Microstructure of $Si_3N_4$ Metal-Insulator-Metal Capacitors ($Si_3N_4$를 이용한 금속-유전체-금속 구조 커패시터의 유전 특성 및 미세구조 연구)

  • 서동우;이승윤;강진영
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2000
  • High quality $Si_3N_4$ metal-insulator-metal (MIM) capacitors were realized by plasma enhanced chemical vapor deposition (PECVD). Titanium nitride (TiN) adapted as a diffusion barrier reduced the interfacial reaction between $Si_3N_4$ dielectric layer and aluminum metal electrode showing neither hillock nor observable precipitate along the interface. The capacitance and the current-voltage characteristics of the MIM capacitors showed that the minimum thickness of $Si_3N_4$ layer should be limited to 500 $\AA$ under the present process, below which most of the capacitors were electrically shorted resulting in the devastation of on-wafer yield. According to the transmission electron microscopy (TEM) on the cross-sectional microstructure of the capacitors, the dielectric breakdown was caused by slit-like voids formed at the interface between TiN and $Si_3N_4$ layers when the thickness of $Si_3N_4$ layer was less than 500 $\AA$. Based on the calculation of thermally-induced residual stress, the formation of voids was understood from the mechanistic point of view.

  • PDF

Enhanced Hole Concentration of p-GaN by Sb Surfactant (Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상)

  • Kim, J.Y.;Park, S.J.;Moon, Y.B.;Kwon, M.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • The role and effect of Sb surfactant on structure and properties of p type gallium nitride (GaN) epilayers have been investigated. It was found that there was a increase of hole concentration with Sb surfactant, compared to typical Mg-doped p-GaN. The structural and optical quality of p-GaN epilayers were accessed by x-ray diffraction, photoluminescence and atomic force microscope measurements. The results clearly show that the increase in hole concentration with Sb surfactant can be resulted from decrease in the dislocations and nitrogen point defects.