Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.4.208

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire  

Kim, Dae-sik (Department of Materials Science & Engineering, Korea University)
Kwon, Jun-hyuck (Department of Materials Science & Engineering, Korea University)
Jhin, Junggeun (LED Procurement Team, LG Innotek)
Byun, Dongjin (Department of Materials Science & Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.28, no.4, 2018 , pp. 208-213 More about this Journal
Abstract
Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.
Keywords
heat treatment; photoresist mask; gallium nitride thin film; epitaxial lateral overgrowth; metal organic chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz and A. Hangleiter, Phys. Rev. B, 57, R9435 (1998).   DOI
2 R. Langer, J. Simon, V. Ortiz, N. T. Pelekanos, A. Barski, R. Andre and M. Godlewski, Appl. Phys. Lett., 74, 3827 (1999).   DOI
3 P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allegre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, Appl. Phys. Lett., 78, 1252 (2001).   DOI
4 T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka and N. Yamada, Appl. Phys. Lett., 73, 1691 (1998).   DOI
5 F. Bernardini and V. Fiorentini, Phys. Rev. B, 57, R9427 (1998).   DOI
6 R. Cingolani, A. Botchkarev, H. Tang, H. Morkoc, G. Traetta, G. Coli, M. Lomascolo, A. D. Carlo, F. D. Sala and P. Lugli, Phys. Rev. B, 61, 2711 (2000).   DOI
7 P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, Nature, 406, 865 (2000).   DOI
8 Y. J. Sun, O. Brandt, S. Cronenberg, S. Dhar, H. T. Grahn, K. H. Ploog, P. Waltereit and J. S. Speck, Phys. Rev. B, 67, 041306 (2003).   DOI
9 M. D. Craven, S. H. Lim, F. Wu, J. S. Speck and S. P. Denbaars, Appl. Phys. Lett., 81, 469 (2002).   DOI
10 S. Jang, D. Lee, J.-H. Kwon, S.-I. Kim, S. Y. Yim, J. Lee, J. H. Park and D. Byun, Jpn. J. Appl. Phys., 52, 115501 (2012).
11 C. Roder, S. Einfeldt, S. Figge, T. Paskova, D. Hommel, P. P. Paskov, B. Monemar, U. Behn, B. A. Haskell, P. T. Fini and S. Nakamura, J. Appl. Phys., 100, 103511 (2006).   DOI
12 B. H. Kang, J. E. Lee, D.-S. Kim, S. Bae, S. Jung, J. Park, J. Jhin and D. Byun, J. Nanosci. Nanotechnol., 16, 11563 (2016).   DOI
13 S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., 30, L1708 (1991).   DOI
14 M. A. Khan, A. Bhattarai, J. N. Kuznia and D. T. Oison, Appl. Phys. Lett., 63, 1214 (1993).   DOI
15 H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys., 76, 1363 (1994).   DOI
16 D.-S. Kim, C.-M. Lee, W. S. Jeong, S. H. Cho, J. Jhin and D. Byun, J. Nanosci. Nanotechnol., 16, 11575 (2016).   DOI
17 C.-M. Lee, B. H. Kang, D.-S. Kim and D. Byun, Korean J. Mater. Res., 24, 645 (2014).   DOI
18 S.-I. Kim, B. Kim, S. Jang, A.-Y. Kim, J. Park and D. Byun, J. Cryst. Growth, 326, 200 (2011).   DOI
19 D.-S. Kim, W. S. Jeong, H. Ko, J.-S. Lee and D. Byun, Thin Solid Films, 641, 2 (2017).   DOI
20 C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau and S. J. Cheng, Appl. Phys. Lett., 93, 081108 (2008).   DOI
21 J. A. Smart, E. M. Chumbes, A. T. Schremer, and J. R. Shealy, Appl. Phys. Lett., 75, 3820 (1999).   DOI
22 A. Strittmatter, S. Rodt, L. Reissmann, D. Bimberg, H. Schroder, E. Obermeier, T. Riemann, J. Christen and A. Krost, Appl. Phys. Lett., 78, 727 (2001).   DOI
23 T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho and M. Sato, J. Mater. Process. Tech., 194, 52 (2007).   DOI
24 G. Guzman, M. Herrera, R. Silva, G. C. Vasquez and D. Maestre, Semicond. Sci. Technol., 31, 055006 (2016).   DOI
25 T. K. Sherwood and R. O. Maak, Ind. Eng. Chem. Fundam., 1, 111, (1962).   DOI
26 F. K. Dijen and J. Pluijmakers, J. Eur. Ceram. Soc., 5, 385 (1989).   DOI
27 G. C. Lars, S. Felix, A.-P. Frank, P. Vivien, K. Jesper, B. Thomas and N. K. Jens, Angew. Chem., Int. Ed., 50, 4601 (2011).   DOI
28 F. Cacace and A. P. Wolf, J. Am. Chem. Soc., 87, 5301 (1965).   DOI
29 S. B. Philip, M. W. Daniel and M. Paul, J. Am. Chem. Soc., 105, 488 (1983).   DOI
30 K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka and S. Minagawa, J. Appl. Phys., 79, 3487 (1996).   DOI
31 V. Thakur and S. M. Shivaprasad, Appl. Surf. Sci., 327, 389 (2015).   DOI