• Title/Summary/Keyword: Vacuum measurement standards

Search Result 46, Processing Time 0.036 seconds

Measurement Uncertainties for Vacuum Standards from a Low to an Ultra-high Vacuum

  • Hong, S.S.;Shin, Y.H.;Lim, J.Y.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.103-112
    • /
    • 2014
  • The Korea Research Institute of Standards and Science (KRISS) has three major vacuum systems: an ultrasonic interferometer manometer (UIM; Section II, Figs. 1 and 2) for a low vacuum, a static expansion system (SES; Section III, Figs. 3 and 4) for a medium vacuum, and an orifice-type dynamic expansion system (DES, Section IV, Figs. 5 and 6) for high and ultra-high vacuum systems. For each system, explicit measurement model equations with multiple variables are given. According to ISO standards, all of these system variable errors were used to calculate the expanded uncertainty (U). For each system, the expanded uncertainties (k = 1, confidence level = 95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) levels are summarized in Table 4. Within the uncertainty limits, our bilateral and key comparisons [CCM.P-K4 (10 Pa to 1 kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table 5).

Results of the key comparison in absolute pressure from 1 Pa to 1000 Pa

  • Hong, Seung-Soo;Shin, Yong-Hyeon;Chung, Kwang-Hwa;A. P. Miiller
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.109-115
    • /
    • 2002
  • This paper describes a CCM key comparison of low absolute-pressure standards at seven National Measurement Institutes that was carried out during the period March 1998 to September 1999 in order to determine their degrees of equivalence at pressures in the range 1 Pa to 1000 Pa. The Korea Research Institutes of Standards and Science(KRISS) participated from 10 Pa to 1000 Pa pressure range in 1999. The primary standards, which represent two principal measurement methods, included five liquid-column manometers and four static expansion systems. The transfer standard package consisted of four high-precision pressure transducers, two capacitance diaphragm gauges to provide high resolution at low pressures, and two resonant silicon gauges to provide the required calibration stability.

  • PDF

Development of Uncertainty Evaluation Model for Vacuum Measurement Standards (진공측정표준의 불확도 평가모델 개발)

  • Hong, S.S.;Lim, J.Y.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.313-321
    • /
    • 2011
  • The Korea Research Institute of Standards and Science (KRISS) has three major vacuum systems: an ultrasonic interferometer manometer (UIM), a static volume expansion system (SVES), and an orifice-type dynamic expansion system (ODES). For each system explict measurement model equations with multiple variables are respectively given. According to ISO standards, all these system variables errors were used to calculate the expanded uncertainty (U).

Development of Inner Pressure Measurement System for Hermetic Sealed Small Components (밀폐된 소형부품의 내부압력 측정장치 개발)

  • Hong, S.S.;Lim, I.T.;Lim, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • The measurement device of internal pressures of small components sealed hermetically was developed. The internal pressure of a sample measured with this device was 43.151 kPa, and the expanded uncertainty ($\kappa$=2) was 741 Pa. The resultant measurement ability of internal pressures in small vacuum components, which had been almost impossible previously, shows the possibility of internal vacuum detection of hermetically sealed parts.

Measurement of Particles Generated from PECVD Process using ISPM (ISPM을 이용한 PECVD 공정 내 발생입자 측정 연구)

  • Kim, Dongbin;Mun, Jihun;Kim, HyeongU;Kang, Byung Soo;Yun, JuYoung;Kang, SangWoo;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.11 no.4
    • /
    • pp.93-98
    • /
    • 2015
  • Particles which generated from plasma enhanced chemical vapor deposition (PECVD) during thin film deposition process can affect to the process yield. By using light extinction method, ISPM can measure particles in the large-diameter pipe (${\leq}300mm$). In our research, in-situ particle monitor (ISPM) sensor was installed at the 300 mm diameter exhaust-line to count the particles in each size. In-house flange for mounting the transmitting and receiving parts of ISPM was carefully designed and installed at a certain point of exhaust line where no plasma light affect to the light extinction measurement. Measurement results of trend changes on particle count in each size can confirm that ISPM is suitable for real-time monitoring of vacuum process.

Calibration of Discharge Coefficient of Sonic Nozzle Using CVFM (정적형 유량계를 이용한 소닉노즐 유출계수 교정 방법에 관한 연구)

  • Shin, J.H.;Kang, S.B.;Park, K.A.;Lim, J.Y.;Cheung, W.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.243-248
    • /
    • 2010
  • Sonic nozzles have been a standard device for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two sonic nozzles of diameter ${\Phi}$ 0.03 mm and ${\Phi}$ 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter(CVFM), readily set up in the Vacuum center of KRISS. was used to calibrate the discharge coefficients of both nozzles. The calibration results were shown to determine them within the 3% expanded measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process in the ranges of 0.6~1,800 cc/min. Those flow conditions are equivalent to the fine gas flow with Reynolds numbers of 26~12,100. Those encouraging results confirm that calibrated sonic nozzles enable precision measurement of extremely low gas flow encountered very often in th vacuum processes. Both calibrated sonic nozzles are proven to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of vacuum pumps in the semiconductor and flat display processes. Furthermore, they can provide other applications to flow control devices in vacuum, such as MFC, etc.

Study on the Measurement of TMP Pumping Speed (터보분자펌프(TMP) 배기속도 측정에 관한 고찰)

  • Kang, S.B.;Shin, J.H.;Cha, D.J.;Koh, D.Y.;Cheung, W.S.;Lim, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.249-255
    • /
    • 2010
  • Methods of the characteristics evaluation of turbo-molecular pumps (TMP) are well-defined in the international measurement standards such as ISO, PNEUROP, DIN, JIS, and AVS. The Vacuum Center in the Korea Research Institute of Standards and Science (KRISS) has recently designed, constructed, and established the integrated characteristics evaluation system of TMPs based on the international documents by continuously pursuing and acquiring the reliable international credibility through measurement perfection. The measurement of TMP pumping speed is normally performed with the throughput and orifice methods dependent on the mass flow regions. However, in the UHV range of the molecular flow region, the high uncertainties of the gauges, mass flow rates, and conductance are too critical to precisely accumulate reliable data. In order to solve the uncertainty problems of pumping speeds in the UHV range, we introduced a SRG with 1% accuracy and a constant volume flow meter (CVFM) to measure the finite mass flow rates down to $10^{-1}$ Pa-L/s with 3% uncertainty for the throughput method. In this way we have performed the measurement of pumping speed down to $10^{-4}$ Pa with an uncertainty of less than 6% for a 1000 L/s TMP. In this article we suggest that the CVFM has an ability to measure the conductance of the orifice experimentally with flowing the known mass through the orifice chambers, so that we may overcome the discontinuity problem encountering during introducing two measurement methods in one pumping speed evaluation sequence.

Development of a national medium vacuum standard by static expansion method (정적법을 이용한 중진공 국가표준기 개발)

  • Hong S. S.;Lim I. T.;Shin Y. H.;Chung K. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.59-68
    • /
    • 2005
  • We developed a national medium vacuum standard by static expansion method. A 133 Pa capacitance diaphragm gauge was calibrated and analysed according to the document of 'Guide to the Expression of Uncertainty in Measurement' of ISO. The results showed that the expanded uncertainty of $2.628\times10^{-3}$ Pa at $95\%$ confidence level and coverage factor of k=2.

The Study of Pressure Vacuum Measurement Techniques Using Ultrasonic Acoustic Impedance Transducers (초음파 음향임피던스 변환기를 이용한 저압 저진공 측정기술 연구)

  • Hong, S.S.;Shin, Y.H.;Cho, S.H.;Ahn, B.Y.;Lim, J.Y.;Choi, I.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.319-325
    • /
    • 2010
  • Pressure vacuum measurement technique using acoustic impedance change of ultrasonic transducers was studied. The sensor has been setup using two air-coupled ultrasonic transducers, one as a transmitter and the other as a receiver, and put it into vacuum chamber and measured pressure versus ultrasonic amplitude. The result confirms that the standard deviations of four repeat measurements were from 0.0093 to 0.3325 at pressure 6.66 kPa to 202.65 kPa(about two atmosphere), and the relative percents were 0.018% and 0.164% at pressure 133.32 kPa and 202.65 kPa, respectively.