• Title/Summary/Keyword: VaR 추정

Search Result 43, Processing Time 0.024 seconds

Multivariate conditional tail expectations (다변량 조건부 꼬리 기대값)

  • Hong, C.S.;Kim, T.W.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1201-1212
    • /
    • 2016
  • Value at Risk (VaR) for market risk management is a favorite method used by financial companies; however, there are some problems that cannot be explained for the amount of loss when a specific investment fails. Conditional Tail Expectation (CTE) is an alternative risk measure defined as the conditional expectation exceeded VaR. Multivariate loss rates are transformed into a univariate distribution in real financial markets in order to obtain CTE for some portfolio as well as to estimate CTE. We propose multivariate CTEs using multivariate quantile vectors. A relationship among multivariate CTEs is also derived by extending univariate CTEs. Multivariate CTEs are obtained from bivariate and trivariate normal distributions; in addition, relationships among multivariate CTEs are also explored. We then discuss the extensibility to high dimension as well as illustrate some examples. Multivariate CTEs (using variance-covariance matrix and multivariate quantile vector) are found to have smaller values than CTEs transformed to univariate. Therefore, it can be concluded that the proposed multivariate CTEs provides smaller estimates that represent less risk than others and that a drastic investment using this CTE is also possible when a diversified investment strategy includes many companies in a portfolio.

Comparison of Dimension Reduction Methods for Time Series Factor Analysis: A Case Study (Value at Risk의 사후검증을 통한 다변량 시계열자료의 차원축소 방법의 비교: 사례분석)

  • Lee, Dae-Su;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.597-607
    • /
    • 2011
  • Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.

Saddlepoint approximations for the risk measures of linear portfolios based on generalized hyperbolic distributions (일반화 쌍곡분포 기반 선형 포트폴리오 위험측도에 대한 안장점근사)

  • Na, Jonghwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.959-967
    • /
    • 2016
  • Distributional assumptions on equity returns play a key role in valuation theories for derivative securities. Elberlein and Keller (1995) investigated the distributional form of compound returns and found that some of standard assumptions can not be justified. Instead, Generalized Hyperbolic (GH) distribution fit the empirical returns with high accuracy. Hu and Kercheval (2007) also show that the normal distribution leads to VaR (Value at Risk) estimate that significantly underestimate the realized empirical values, while the GH distributions do not. We consider saddlepoint approximations to estimate the VaR and the ES (Expected Shortfall) which frequently encountered in finance and insurance as measures of risk management. We supposed GH distributions instead of normal ones, as underlying distribution of linear portfolios. Simulation results show the saddlepoint approximations are very accurate than normal ones.

Long Memory Properties in the Volatility of Australian Financial Markets: A VaR Approach (호주 금융시장 변동성의 장기기억 특성: VaR 접근법)

  • Kang, Sang-Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.12 no.2
    • /
    • pp.3-26
    • /
    • 2008
  • This article investigates the usefulness of the skewed Student-t distribution in modeling the long memory volatility property that might be present in the daily returns of two Australian financial series; the ASX200 stock index and AUD/USD exchange rate. For this purpose we assess the performance of FIGARCH and FIAPARCH Value-at-Risk (VaR) models based on the normal, Student-t, and skewed Student-t distribution innovations. Our results support the argument that the skewed Student-t distribution models produce more accurate VaR estimates of Australian financial markets than the normal and Student-t distribution models. Thus, consideration of skewness and excess kurtosis in asset return distributions provides appropriate criteria for model selection in the context of long memory volatility models in Australian stock and foreign exchange markets.

Assessments for MGARCH Models Using Back-Testing: Case Study (사후검증(Back-testing)을 통한 다변량-GARCH 모형의 평가: 사례분석)

  • Hwang, S.Y.;Choi, M.S.;Do, J.D.
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.261-270
    • /
    • 2009
  • Current financial crisis triggered by shaky U.S. banking system adds to the emphasis on the importance of the volatility in controlling and understanding financial time series data. The ARCH and GARCH models have been useful in analyzing economic time series volatilities. In particular, multivariate GARCH(MGARCH, for short) provides both volatilities and conditional correlations between several time series and these are in turn applied to computations of hedge-ratio and VaR. In this short article, we try to assess various MGARCH models with respect to the back-testing performances in VaR study. To this end, 14 korean stock prices are analyzed and it is found that MGARCH outperforms rolling window, and BEKK and CCC are relatively conservative in back-testing performance.

Effect of Dual Inoculation with Glomus mosseae and Bradyrhizobium sp. R938 on the Nitrogenase Activity of Arachis hypogeae L. (Glomus mosseae와 Bradyrhizobium sp. R938의 동시 접종에 의한 땅콩의 질소고정력 증진효과)

  • 서현창;김창진;김신덕;유익동
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.548-552
    • /
    • 1991
  • The effect of dual inoculation with vesicular-arbuscular (VA) mycorrhizal fungi, Glomus mosseae, and Bradyrhizobium sp. R938 on the nitrogenase activity of peanut plant (Arachis hypogeae L. cv. Youngho) was studied in pot experiment. As a result of the dual inoculation with Glomus mosseae and Bradyrhizobium on peanut plant, nitrogenase activity was increased by 1.5 times compared with single inoculation with Bradyrhizobium sp. R938. After 69 days growth of peanut plant, the size of nodules was also increased due to the mycorrhizal infection. The mean fresh weight per nodule was 6.7 mg in treatment with the dual inoculation, which is the 1.5 times increase compared with single inoculation with Bradyrhizobium sp. R938. These results suggested that there might be a hormonal effect of VA mycorrhizal fungi in addition to the effect of increase in nitrogen fixing ability through the enhancement of nutrient absorption.

  • PDF

ETF risk management (ETF 위험관리에 관한 연구)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.843-851
    • /
    • 2017
  • The rise of the Robo-advisor represents one of the most profound shifts in FinTech. It also raises concerns about their financial management. As the most Robo-Advisors utilize ETFs, we seek to determine the appropriate risk management model in estimating 95% Value-at-Risk (VaR) and 99% VaR in this paper. The GARCH and the Markov regime wwitching GARCH are evaluated in terms of the accuracy of probability, the independence of extreme events occurrence and both. The result shows that the Markov regime switching GARCH can be a good ETF risk management tool since it can reflect financial market structural changes into the volatility.

A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution (Normal inverse Gaussian 분포에서 모수추정의 보정 방법 연구)

  • Yoon, Jeongyoen;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.741-752
    • /
    • 2016
  • Numerous studies have shown that normal inverse Gaussian (NIG) distribution adequately fits the empirical return distribution of financial securities. The estimation of parameters can also be done relatively easily, which makes the NIG distribution more useful in financial markets. The maximum likelihood estimation and the method of moments estimation are easy to implement; however, we may encounter a problem in practice when a relationship among the moments is violated. In this paper, we investigate this problem in the parameter estimation and try to find a simple solution through simulations. We examine the effect of our adjusted estimation method with real data: daily log returns of KOSPI, S&P500, FTSE and HANG SENG. We also checked the performance of our method by computing the value at risk of daily log return data. The results show that our method improves the stability of parameter estimation, while it retains a comparable performance in goodness-of-fit.

Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution (GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화)

  • Kim, Hyundon;Kim, Hyun Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1479-1494
    • /
    • 2015
  • Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.

Comparing Among GARCH-VaR Models and Distributions from Korean Stock Market (KOSPI) :Focusing on Long and Short Positions (한국 KOSPI시장의 GARCH-VaR 측정모형 및 분포간 성과평가에 관한 연구:롱 및 숏 포지션 전략을 중심으로)

  • Son, Pan-Do
    • The Korean Journal of Financial Management
    • /
    • v.25 no.4
    • /
    • pp.79-116
    • /
    • 2008
  • This paper examines and estimates GARCH-VaR models (RiskMetrics, GARCH, IGARCH, GJR and APARCH) with three different distributions such as Gaussian normal, Student-t, Skewness Student-t Distribution using the daily price data from Korean Stock Market during Jan. 1, 1980-Sept. 30, 2004. It also compares them. In-sample test, this finds that for all confidence level as $90%{\sim}99.9%$, the performance and accuracy of IGARCH with ${\lambda}=0.87$ and skewness Student-t distribution are superior to other models and distributions in long position, but GARCH and GJR with Skewness Student-t distribution in short position. For above 99% confidence level, the performance and accuracy of IGARCH with ${\lambda}=0.87$ in both long and short positions are superior to other models and distributions, but Skewness Student-t distribution for long position and Student-t distribution for short position are more accuracy and superior to other distributions. In-out-of sample test, these results also confirm the evidences that the above findings are consistent as well.

  • PDF