DOI QR코드

DOI QR Code

Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution

GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화

  • Kim, Hyundon (Department of Applied Statistics, Yonsei University) ;
  • Kim, Hyun Tae (Department of Applied Statistics, Yonsei University)
  • 김현돈 (연세대학교 응용통계학과) ;
  • 김현태 (연세대학교 응용통계학과)
  • Received : 2015.10.30
  • Accepted : 2015.11.24
  • Published : 2015.11.30

Abstract

Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.

최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.

Keywords

References

  1. Alexander, G. J. and Baptista, A. M. (2002). Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. Journal of Economic Dynamics and Control, 26, 1159-1198 https://doi.org/10.1016/S0165-1889(01)00041-0
  2. Anione, S., Loraschi, A. and Tettamanzi, A. (1993). A genetic approach to portfolio selection. Neural Network World, 6, 597-604. https://doi.org/10.1016/S0893-6080(05)80062-0
  3. Balkema, A. A. and De Haan, L. (1974). Residual life time at great age. The Annals of probability, 2, 792-804. https://doi.org/10.1214/aop/1176996548
  4. Bridges, C. L. and Goldberg, D. E. (1987). An analysis of reproduction and crossover in a binary-coded genetic algorithm. Grefenstette, 878, 9-13.
  5. Byun, H. W., Song, C. W., Han, S. K., Lee, T. K. and Oh, K. J. (2009). Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market. Journal of the Korean Data & Information Science Society, 20, 1049-1060.
  6. Chambers, L. D. (1995). Practical Handbook of Genetic Algorithms, CRC Press, Florida.
  7. Chung, S. H. and Oh, K. J. (2014). Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market. Journal of the Korean Data & Information Science Society, 25, 281-292. https://doi.org/10.7465/jkdi.2014.25.2.281
  8. Davison, A. and R. Smith. (1990). Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society, 52, 393-442.
  9. Eberhart, R., Simpson, P. and Dobbins, R. (1996). Computational intelligence PC tools, Academic Press Professional, San Diego.
  10. Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling extremal events for Insurance and Finance, Springer, New York.
  11. Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning . Addison wesley, Boston.
  12. Lin, P. C. and Ko, P. C. (2009). Portfolio value-at-risk forecasting with GA-based extreme value theory. Expert Systems with Applications, 36, 2503-2512. https://doi.org/10.1016/j.eswa.2008.01.086
  13. Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal of Banking and Finance, 24, 1097-1130. https://doi.org/10.1016/S0378-4266(99)00077-1
  14. Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77-91.
  15. Marsili, M., Maslov, S. and Zhang, Y. C. (1998). Dynamical optimization theory of a diversified portfolio. Physica A: Statistical Mechanics and its Applications, 253, 403-418. https://doi.org/10.1016/S0378-4371(98)00075-2
  16. Oh, K. J., Kim, T. Y., Min, S. H. and Lee, H. Y. (2006). Portfolio algorithm based on portfolio beta using genetic algorithm. Expert Systems with Applications, 30, 527-534. https://doi.org/10.1016/j.eswa.2005.10.010
  17. Oh, S. K. (2005). Oh, S. K., Extreme Value Theory and Value at Risk focusing on GPD Models. Journal of Money and Finance, 19, 72-114.
  18. Pickands III, J. (1975). Statistical inference using extreme order statistics. the Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
  19. Rankovi, V., Drenovak, M., Stojanovi, B., Kalini, Z. and Arsovski, Z. (2014). The mean-Value at Risk static portfolio optimization using genetic algorithm. Computer Science and Information Systems, 11, 89-109. https://doi.org/10.2298/CSIS121024017R
  20. Scrucca, L. (2014). GA: a package for genetic algorithms in R. Journal of Statistical Software, 53, 1-37.
  21. Shoaf, J. and Foster, J. (1998). The efficient set GA for stock portfolios. In Proceedings of the 1998 IEEE international conference on computational intelligence, 354-359, IEEE Service Center, New Jersey.
  22. Statman, M. (1987). How many stocks make a diversified portfolio?. Journal of Financial and Quantitative Analysis, 22, 353-363. https://doi.org/10.2307/2330969

Cited by

  1. The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1001