References
- Alexander, G. J. and Baptista, A. M. (2002). Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. Journal of Economic Dynamics and Control, 26, 1159-1198 https://doi.org/10.1016/S0165-1889(01)00041-0
- Anione, S., Loraschi, A. and Tettamanzi, A. (1993). A genetic approach to portfolio selection. Neural Network World, 6, 597-604. https://doi.org/10.1016/S0893-6080(05)80062-0
- Balkema, A. A. and De Haan, L. (1974). Residual life time at great age. The Annals of probability, 2, 792-804. https://doi.org/10.1214/aop/1176996548
- Bridges, C. L. and Goldberg, D. E. (1987). An analysis of reproduction and crossover in a binary-coded genetic algorithm. Grefenstette, 878, 9-13.
- Byun, H. W., Song, C. W., Han, S. K., Lee, T. K. and Oh, K. J. (2009). Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market. Journal of the Korean Data & Information Science Society, 20, 1049-1060.
- Chambers, L. D. (1995). Practical Handbook of Genetic Algorithms, CRC Press, Florida.
- Chung, S. H. and Oh, K. J. (2014). Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market. Journal of the Korean Data & Information Science Society, 25, 281-292. https://doi.org/10.7465/jkdi.2014.25.2.281
- Davison, A. and R. Smith. (1990). Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society, 52, 393-442.
- Eberhart, R., Simpson, P. and Dobbins, R. (1996). Computational intelligence PC tools, Academic Press Professional, San Diego.
- Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling extremal events for Insurance and Finance, Springer, New York.
- Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning . Addison wesley, Boston.
- Lin, P. C. and Ko, P. C. (2009). Portfolio value-at-risk forecasting with GA-based extreme value theory. Expert Systems with Applications, 36, 2503-2512. https://doi.org/10.1016/j.eswa.2008.01.086
- Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal of Banking and Finance, 24, 1097-1130. https://doi.org/10.1016/S0378-4266(99)00077-1
- Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77-91.
- Marsili, M., Maslov, S. and Zhang, Y. C. (1998). Dynamical optimization theory of a diversified portfolio. Physica A: Statistical Mechanics and its Applications, 253, 403-418. https://doi.org/10.1016/S0378-4371(98)00075-2
- Oh, K. J., Kim, T. Y., Min, S. H. and Lee, H. Y. (2006). Portfolio algorithm based on portfolio beta using genetic algorithm. Expert Systems with Applications, 30, 527-534. https://doi.org/10.1016/j.eswa.2005.10.010
- Oh, S. K. (2005). Oh, S. K., Extreme Value Theory and Value at Risk focusing on GPD Models. Journal of Money and Finance, 19, 72-114.
- Pickands III, J. (1975). Statistical inference using extreme order statistics. the Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
- Rankovi, V., Drenovak, M., Stojanovi, B., Kalini, Z. and Arsovski, Z. (2014). The mean-Value at Risk static portfolio optimization using genetic algorithm. Computer Science and Information Systems, 11, 89-109. https://doi.org/10.2298/CSIS121024017R
- Scrucca, L. (2014). GA: a package for genetic algorithms in R. Journal of Statistical Software, 53, 1-37.
- Shoaf, J. and Foster, J. (1998). The efficient set GA for stock portfolios. In Proceedings of the 1998 IEEE international conference on computational intelligence, 354-359, IEEE Service Center, New Jersey.
- Statman, M. (1987). How many stocks make a diversified portfolio?. Journal of Financial and Quantitative Analysis, 22, 353-363. https://doi.org/10.2307/2330969
Cited by
- The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.1001