• Title/Summary/Keyword: V.A.S

Search Result 11,800, Processing Time 0.038 seconds

Crustal Structure of the Southern Part of Korea (한국(韓國) 남부지역(南部地域)의 지각구조(地殼構造))

  • Kim, Sung Kyun;Jung, Bu Hung
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 1985
  • Events detected by the KIER microearthquake network operated in the Southern Part of Korea for 265 days in 1982~1984 were reviewed, and some of them were identified to be a dynamite explosion from several construction sites. The purpose of the present work is to determine the crustal structure of the Southern Korea using the time-destance data obtained from such explosion seismic records. The time·distance data can be well explained by a crustal model composed of four horizontal layers of which thickness, p and s-wave velocity ($V_p$ and $V_s$) are characterized as follows. 1st layer (surface) ; 0~2km, $V_p=5.5km/sec$, $V_s=3.3km/sec$ 2nd layer (upper crust) ; 2~15km, $V_p=6.0km/sec$, $V_s=3.5km/sec$ 3rd layer (lower crust) ; 15~29km, $V_p=6.6km/sec$, $V_s=3.7km/sec$ 4th layer (upper mantle) ; 29km~ , $V_p=7.7km/sec$, $V_s=4.3km/sec$ The relatively shallow crust·mantle boundary and low $P_n$ velocity compared with the mean values for stable intraplate region are noteworthy. Supposedely, it is responsible for the high heat flow in the South-eastern Korea or an anomalous subterranean mantle. The mean $V_p/V_s$ ratio calculated from the relation between p-wave arrival and s-p arrival times appears to be 1.735 which is nearly equivalent to the elastic medium of ${\lambda}={\mu}$. However, the ratio tends to be slightly larger with the depth. The ratio is rather high compared with that of the adjacent Japanese Island, and the fact suggests that the underlying crust and upper mantle in this region are more ductile and hence the earthquake occurrences are apt to be interrupted. As an alternative curstal model, a seismic velocity structure in which velocities are successively increased with the depth is also proposed by the inversion of the time·distance data. With the velocity profile, it is possible to calculate a travel time table which is appropriate to determine the earthquake parameters for the local events.

  • PDF

A Study on Driver's Perception over the Change of the Headlamp's Illuminance : 3. Driver's psychological property (전조등 조도변동에 대한 운전자의 인식연구 : 3. 운전자의 심리적 특성)

  • Kim, Huyn-Ji;Kim, Hyun-Jin;Kim, Gi-Hoon;Kim, Hoon;An, Ok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.19-26
    • /
    • 2006
  • In this study, psychological assessment was carried out to investigate the driver's psychological characteristics by the change of the headlight. The participants were 20 men and 20 women in their 20s and thirty-two different conditions in combinations of waveform of light, voltage, and alteration time were used. The questionnaire for the assessment was evaluated by 8 subjective item and 5-point SD criteria of 19 pair's adjective. The results were as follows : 1. The assessment results from SD method indicated 4 factors by factor analysis, and it was shown that A waveform had significances in a sense of security and impetus and B waveform had a significance in a sense of security. The levels of the limitations for the voltage change were 12[V] in the factor of a sense of security and 11[V] in the factor of a sense of impetus for A waveform, 12.6[V] in the factor of a sense of security for B waveform. 2. The results of the subjective assessment showed that the limitation of A waveform's brightness change was 12[V]. Moreover, the limitations of voltage changes were 12.67[V] for B waveform brightness change, 12.12[V] for discomfort, 12.71[V] for darkness. And the limitation of C waveform's brightness change was 12[V].

A COVERING CONDITION FOR THE PRIME SPECTRUMS

  • Hwang, Chul-Ju
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.61-64
    • /
    • 2005
  • Let R be a commutative ring with identity, and let $f,\;g_i(i=1,\;\ldots,\;n),\;g_{\alpha}(\alpha{\in}S)$ be elements of R. We show that the following statements are equivalent; (i) $X_f{\subseteq}{\cup}_{\alpha{\in}S}X_{g\alpha}$ only if $X_f{\subseteq}X_{g\alpha}$ for some $\alpha{\in}S$, (ii) $V(f){\subseteq}{\cup}_{\alpha{\in}S}V(g_{\alpha})$ only if $V(f){\subseteq}V(g_{\alpha})$ for some $\alpha{\in}S$, (iii) $V(f){\subseteq}{\cup}^n_{i=1}V(g_i)$ only if $V(f){\subseteq}V(g_i)$ for some i, (iv) Spec(R) is linearly ordered under inclusion.

  • PDF

The Analysis of Device Models and the Method of Increasing Compatibility Between Device Models for M&S V&V of NetSPIN (NetSPIN M&S 모델 V&V를 위한 장비 모델 및 모델간 호환성 증진방안 분석)

  • Park, In-Hye;Kang, Seok-Joong;Lee, Hyung-Keun;Shim, Sang-Heun
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.51-60
    • /
    • 2012
  • In this paper, we provide the analysis of device model and method between device models for compatible M&S V&V of the NetSPIN. First of all, we analysis features, structure, and classification of the NetSPIN. The second, as a part of reliable V&V process, we analysis network system modeling process, correlation between device modeling process for M&S of the NetSPIN. The third, we suggest making a kind of pool of reference model and module of devices for the increase factor of reuse between device model. We also, at the point view of M&S V&V, conclude that there is the validity of the fidelity in device modeling process. Through the analysis of the NetSPIN device model and suggestion of the method for higher compatibility between device modes, the development process of device model be clearly understood. Also we present the effective method of the development for reliable device mode as the point of V&V.

PAIR MEAN CORDIAL LABELING OF GRAPHS OBTAINED FROM PATH AND CYCLE

  • PONRAJ, R.;PRABHU, S.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.85-97
    • /
    • 2022
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}\;=\;\{\array{{\frac{p}{2}}&p\text{ is even}\\{\frac{p-1}{2}}\;&p\text{ is odd,}}$$ and M = {±1, ±2, ⋯ ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{S}}_{{\lambda}_1}-\bar{\mathbb{S}}_{{\lambda}^c_1}{\mid}{\leq}1$ where $\bar{\mathbb{S}}_{{\lambda}_1}$ and $\bar{\mathbb{S}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling of graphs which are obtained from path and cycle.

ON PAIR MEAN CORDIAL GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.3_4
    • /
    • pp.237-253
    • /
    • 2023
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} & \;\;p\text{ is even} \\ {\frac{p-1}{2}} & \;\;p\text{ is odd,}$$ and M = {±1, ±2, … ± ρ} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling ${\frac{{\lambda}(u)+{\lambda}(v)}{2}}$ if λ(u) + λ(v) is even and ${\frac{{\lambda}(u)+{\lambda}(v)+1}{2}}$ if λ(u) + λ(v) is odd such that ${\mid}{\bar{{\mathbb{S}}}}_{\lambda}{_1}-{\bar{{\mathbb{S}}}}_{{\lambda}^c_1}{\mid}{\leq}1$ where ${\bar{{\mathbb{S}}}}_{\lambda}{_1}$ and ${\bar{{\mathbb{S}}}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of few graphs including the closed helm graph, web graph, jewel graph, sunflower graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph.

PAIR MEAN CORDIAL LABELING OF SOME UNION OF GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.55-69
    • /
    • 2024
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} && p\;\text{is even} \\ {\frac{p-1}{2}} && p\;\text{is odd,}}$$ and M = {±1, ±2, … ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{s}}_{{\lambda}_1}-\bar{\mathbb{s}}_{{\lambda}^c_1}{\mid}\,{\leq}\,1$ where $\bar{\mathbb{s}}_{{\lambda}_1}$ and $\bar{\mathbb{s}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G with a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of some union of graphs.

A Heuristic for Dual Mode Routing with Vehicle and Drone

  • Min, Yun-Hong;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.79-84
    • /
    • 2016
  • In this paper we consider the problem of finding the triplet (S,${\pi}$,f), where $S{\subseteq}V$, ${\pi}$ is a sequence of nodes in S and $f:V{\backslash}S{\rightarrow}S$ for a given complete graph G=(V,E). In particular, there exist two costs, $c^V_{uv}$ and $c^D_{uv}$ for $(u,v){\in}E$, and the cost of triplet (S,${\pi}$,f) is defined as $\sum_{i=1}^{{\mid}S{\mid}}c^V_{{\pi}(i){\pi}(i+1)}+2$ ${\sum_{u{\in}V{\backslash}S}c^D_{uf(u)}$. This problem is motivated by the integrated routing of the vehicle and drone for urban delivery services. Since a well-known NP-complete TSP (Traveling Salesman Problem) is a special case of our problem, we cannot expect to have any polynomial-time algorithm unless P=NP. Furthermore, for practical purposes, we may not rely on time-exhaustive enumeration method such as branch-and-bound and branch-and-cut. This paper suggests the simple heuristic which is motivated by the MST (minimum spanning tree)-based approximation algorithm and neighborhood search heuristic for TSP.

NOTE ON UPPER BOUND SIGNED 2-INDEPENDENCE IN DIGRAPHS

  • Kim, Hye Kyung
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.579-585
    • /
    • 2012
  • Let D be a finite digraph with the vertex set V(D) and arc set A(D). A two-valued function $f:V(D){\rightarrow}\{-1,\;1\}$ defined on the vertices of a digraph D is called a signed 2-independence function if $f(N^-[v]){\leq}1$ for every $v$ in D. The weight of a signed 2-independence function is $f(V(D))=\sum\limits_{v{\in}V(D)}\;f(v)$. The maximum weight of a signed 2-independence function of D is the signed 2-independence number ${\alpha}_s{^2}(D)$ of D. Recently, Volkmann [3] began to investigate this parameter in digraphs and presented some upper bounds on ${\alpha}_{s}^{2}(D)$ for general digraph D. In this paper, we improve upper bounds on ${\alpha}_s{^2}(D)$ given by Volkmann [3].

EXISTENCE OF SOLUTIONS FOR FRACTIONAL p&q-KIRCHHOFF SYSTEM IN UNBOUNDED DOMAIN

  • Bao, Jinfeng;Chen, Caisheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1441-1462
    • /
    • 2018
  • In this paper, we investigate the fractional p&q-Kirchhoff type system $$\{M_1([u]^p_{s,p})(-{\Delta})^s_pu+V_1(x){\mid}u{\mid}^{p-2}u\\{\hfill{10}}={\ell}k^{-1}F_u(x,\;u,\;v)+{\lambda}{\alpha}(x){\mid}u{\mid}^{m-2}u,\;x{\in}{\Omega}\\M_2([u]^q_{s,q})(-{\Delta})^s_qv+V_2(x){\mid}v{\mid}^{q-2}v\\{\hfill{10}}={\ell}k^{-1}F_v(x,u,v)+{\mu}{\alpha}(x){\mid}v{\mid}^{m-2}v,\;x{\in}{\Omega},\\u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}{\subset}{\mathbb{R}}^N$ is an unbounded domain with smooth boundary ${\partial}{\Omega}$, and $0<s<1<p{\leq}q$ and sq < N, ${\lambda},{\mu}>0$, $1<m{\leq}k<p^*_s$, ${\ell}{\in}R$, while $[u]^t_{s,t}$ denotes the Gagliardo semi-norm given in (1.2) below. $V_1(x)$, $V_2(x)$, $a(x):{\mathbb{R}}^N{\rightarrow}(0,\;{\infty})$ are three positive weights, $M_1$, $M_2$ are continuous and positive functions in ${\mathbb{R}}^+$. Using variational methods, we prove existence of infinitely many high-energy solutions for the above system.