ON PAIR MEAN CORDIAL GRAPHS

R. PONRAJ* AND S. PRABHU

Abstract

Let a graph $G=(V, E)$ be a (p, q) graph. Define $$
\rho=\left\{\begin{array}{cl} \frac{p}{2} & p \text { is even } \\ \frac{p-1}{2} & p \text { is odd } \end{array}\right.
$$ and $M=\{ \pm 1, \pm 2, \cdots \pm \rho\}$ called the set of labels. Consider a mapping $\lambda: V \rightarrow M$ by assigning different labels in M to the different elements of V when p is even and different labels in M to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge $u v$ of G, there exists a labeling $\frac{\lambda(u)+\lambda(v)}{2}$ if $\lambda(u)+\lambda(v)$ is even and $\frac{\lambda(u)+\lambda(v)+1}{2}$ if $\lambda(u)+\lambda(v)$ is odd such that $\left|\overline{\mathbb{S}}_{\lambda_{1}}-\overline{\mathbb{S}}_{\lambda_{1}^{c}}\right| \leq 1$ where $\overline{\mathbb{S}}_{\lambda_{1}}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of few graphs including the closed helm graph, web graph, jewel graph, sunflower graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph.

AMS Mathematics Subject Classification : 05C78.
Key words and phrases : Jewel graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish.

1. Introduction

In this paper, a simple, finite and undirected graph is a pair $G=(V, E)$, where V and E respectively are the set of all vertices and edges. The order and size of G respectively are the number of vertices and edges in G. A graph labeling is the assignment of labels or weights, traditionally represented by integers to vertices and/or edges or both subject to certain conditions. The concept of graph labeling can be applied to used in many applications like communication

[^0]network addressing, data base management, circuit design, astronomy, radar, Xray crystallography, coding theory, network security, channel assignment process and social networks. For the survey of graph labeling, we refer [4]. Most methods of graph labeling track their origin to one introduced by Rosa in [15]. The concept of cordial labeling was initiated by I. Cahit in [2] and the various kinds of cordial labeling were studied by several authors[1,3,5,7,13,14,17-23]. For the basic terms and definitions related to the graph theory we refer [6]. The notion of mean labeling was introduced in [16] and the idea of pair difference cordial labeling was first discussed in [8]. We introduce the concept of pair mean cordial labeling in [9] and examined the pair mean cordial labeling behavior of several graphs in [10-12]. In this paper, we obtain some new pair mean cordial graphs.

2. Preliminaries

Definition 2.1. A closed helm $C H_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex to form a cycle.

Definition 2.2. The web graph $W b_{n}$ is the graph obtained by joining the pendant vertices of a helm H_{n} to form a cycle and then adding a pendant edge to each vertex of outer cycle.
Definition 2.3. The Jewel graph J_{n} is the graph with vertex set $V\left(J_{n}\right)=$ $\left\{u, v, x, y, u_{i}: 1 \leq i \leq n\right\}$ and edge set $E\left(J_{n}\right)=\left\{u x, u y, x y, x v, y v, u u_{i}, v u_{i}: 1 \leq\right.$ $i \leq n\}$. Obviously the Jewel graph J_{n} has $n+4$ vertices and $2 n+5$ edges.

Definition 2.4. The flag graph $F L_{n}$ is obtained by joining one vertex of C_{n} to an extra vertex called root.

Definition 2.5. The sunflower graph S_{n} is obtained by taking a wheel with central vertex u and the cycle $C_{n}: u_{1} u_{2} \ldots u_{n} u_{1}$ and new vertices $v_{1} v_{2} \ldots v_{n}$ where v_{i} is joined by vertices $u_{i}, u_{i+1(\bmod n)}$. Thus the sunflower graph S_{n} has $2 n+1$ vertices and $4 n$ edges.

Definition 2.6. The flower graph $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex to the apex of the helm.

Definition 2.7. The tadpole graph $T(m, n)$ is the graph obtained by joining a cycle C_{m} to a path P_{n} with a bridge.
Definition 2.8. The graph obtained by joining two disjoint cycles $u_{1} u_{2} \ldots u_{m} u_{1}$ and $v_{1} v_{2} \ldots v_{n} v_{1}$ with an edge $u_{1} v_{1}$ is called dumbbell graph and it is denoted by $D b(m, n)$.

Definition 2.9. A umbrella graph $U(m, n)$ is the graph obtained by joining a path P_{n} with the cental vertex of a fan F_{m}.

Definition 2.10. The triangular book graph $B(3, n)$ with n-pages is defined as n copies of cycle C_{3} sharing a common edge. The common edge is called the spine or base of the book.

Definition 2.11. The quadrilateral book graph $B(4, n)$ with n-pages is defined as n copies of cycle C_{4} sharing a common edge. The common edge is called the spine or base of the book.

Definition 2.12. Jelly fish graphs $J(m, n)$ obtained from a cycle $C_{4}: u_{1} u_{2} u_{3} u_{4} u_{1}$ by joining u_{1} and u_{3} with an edge and appending m pendent edges to u_{2} and n pendent edges to u_{4}.

3. Pair Mean Cordial Labeling

Definition 3.1. Let a graph $G=(V, E)$ be a (p, q) graph. Define

$$
\rho=\left\{\begin{array}{cl}
\frac{p}{2} & p \text { is even } \\
\frac{p-1}{2} & p \text { is odd }
\end{array}\right.
$$

and $M=\{ \pm 1, \pm 2, \cdots \pm \rho\}$ called the set of labels. Consider a mapping λ : $V \rightarrow M$ by assigning different labels in M to the different elements of V when p is even and different labels in M to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge $u v$ of G, there exists a labeling $\frac{\lambda(u)+\lambda(v)}{2}$ if $\lambda(u)+\lambda(v)$ is even and $\frac{\lambda(u)+\lambda(v)+1}{2}$ if $\lambda(u)+\lambda(v)$ is odd such that $\left|\overline{\mathbb{S}}_{\lambda_{1}}-\overline{\mathbb{S}}_{\lambda_{1}^{c}}\right| \leq 1$ where $\overline{\mathbb{S}}_{\lambda_{1}}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph.
Theorem 3.2. A helm H_{n} is not a pair mean cordial for all $n \geq 3 .[9]$
Theorem 3.3. A closed helm graph $C H_{n}$ is not a pair mean cordial for all $n \geq 3$.

Proof. Let $V\left(C H_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(C H_{n}\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}, v_{n} v_{1}\right\}$. Then the closed helm graph $C H_{n}$ has $2 n+1$ vertices and $4 n$ edges. Suppose the closed helm $C H_{n}$ is pair mean cordial. Then if the edge $u v$ get the label 1, the only possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is $2 n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 2 n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(2 n-1)=2 n+1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n+1-(2 n-1)=2>1$, a contradiction.
Theorem 3.4. The web graph $W b_{n}$ is pair mean cordial for all $n \geq 3$.
Proof. Let us define $V\left(W b_{n}\right)=\left\{u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(W b_{n}\right)=$ $\left\{u_{i} v_{i}, v_{i} w_{i} 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{n} u_{1}, v_{n} v_{1}: 1 \leq i \leq n-1\right\}$. Then the web graph $W b_{n}$ has $3 n$ vertices and $4 n$ edges. We have the following two cases:
Case 1: n is odd
First assign the labels $-1,-3, \ldots,-n$ to the vertices $u_{1}, u_{3}, \ldots, u_{n}$ respectively and assign the labels $3,5, \ldots, n$ to the vertices $u_{2}, u_{4}, \ldots, u_{n-1}$ respectively. Then we assign the labels $2,4, \ldots, n+1$ to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ respectively
and assign the labels $-2,-4, \ldots,-n+1$ respectively to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$. Next we assign the labels $-n-1,-n-2, \ldots, \frac{-3 n+1}{2}$ to the vertices $w_{1}, w_{2}, \ldots, w_{\frac{n-1}{2}}$ respectively and assign the labels $n+2, n+3, \ldots, \frac{3 n-1}{2}$ respectively to the vertices $w_{\frac{n+1}{2}}, w_{\frac{n+3}{2}}, \ldots, w_{n-2}$. Finally assign the labels $1,-n$ to the vertices w_{n-1}, w_{n} respectively.
Case 2: n is even
Give the labels $-1,-3, \ldots,-n+1$ to the vertices $u_{1}, u_{3}, \ldots, u_{n-1}$ respectively and give the labels $3,5, \ldots, n+1$ to the vertices $u_{2}, u_{4}, \ldots, u_{n}$ respectively. Next we give the labels $2,4, \ldots, n$ to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ respectively and give the labels $-2,-4, \ldots,-n$ respectively to the vertices $v_{2}, v_{4}, \ldots, v_{n}$. Furthermore we give the labels $-n-1,-n-2, \ldots, \frac{-3 n}{2}$ to the vertices $w_{1}, w_{2}, \ldots, w_{\frac{n}{2}}$ respectively and give the labels $n+3, n+4, \ldots, \frac{3 n}{2}$ respectively to the vertices $w_{\frac{n+2}{2}}, w_{\frac{n+4}{2}}, \ldots, w_{n-2}$. Finally give the labels $1, n+2$ to the vertices w_{n-1}, w_{n} respectively. In both cases, $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=2 n$.

Theorem 3.5. The Jewel graph J_{n} is not a pair mean cordial for all $n \geq 1$ and except for $n=3$ and 5 .

Proof. The vertex set and edge set of J_{n} are defined in Definition 2.3. The proof is divided into two cases:
Case 1: n is odd
There are four subcases arises:
Subcase 1: $n=1$
Suppose that J_{n} is pair mean cordial. Then if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 2 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 2$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-2=5$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 5-2=3>1$, a contradiction.
Subcase 2: $n=3$
Let $\lambda(x)=-3, \lambda(y)=1, \lambda(u)=-1, \lambda(v)=-2, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=3$, and $\lambda\left(u_{3}\right)=3$. Then $\overline{\mathbb{S}}_{\lambda_{1}}=5$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=6$.
Subcase 3: $n=5$
Let $\lambda(x)=2, \lambda(u)=3, \lambda(v)=4, \lambda(y)=-1, \lambda\left(u_{1}\right)=-2, \lambda\left(u_{2}\right)=-3$, $\lambda\left(u_{3}\right)=-4, \lambda\left(u_{4}\right)=1$ and $\lambda\left(u_{5}\right)=1$. Then $\overline{\mathbb{S}}_{\lambda_{1}}=7$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=8$.
Subcase 4: $n>5$
Then $n \geq 7$. Suppose that J_{n} is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 7 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 7$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-7=$ $2 n-2$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n-2-7=2 n-9 \geq 5>1$, a contradiction.
Case 2: n is even
There are two subcases arises:
Subcase 1: $n=2$
Suppose that J_{n} is pair mean cordial. Then if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum
number of edges label 1 is 3 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 3$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-3=6$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 6-3=3>1$, a contradiction.
Subcase 2: $n>2$
Then $n \geq 4$. Suppose that J_{n} is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 5 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 5$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-5=2 n$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n-5 \geq 3>1$, a contradiction.

Theorem 3.6. The flag graph $F L_{n}$ is pair mean cordial for all $n \geq 4$.
Proof. Let $V\left(F L_{n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(F L_{n}\right)=\left\{u u_{1}, u_{i} u_{i+1}: 1 \leq i \leq\right.$ $n-1\}$. Then the flag graph $F L_{n}$ has $n+1$ vertices and $n+1$ edges. Thus we have the following four cases:
Case 1: n is odd
There are two subcases arises:
Subcase 1: $n=3$
Suppose that $F L_{n}$ is pair mean cordial. Then if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 1 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq 3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 3-1=2>1$, a contradiction.
Subcase 2: $n>3$
Let us define $\lambda(u)=1, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=3$ and $\lambda\left(u_{4}\right)=-2$. Next we assign the labels $-3,-4, \ldots, \frac{-n-1}{2}$ respectively to the vertices $u_{5}, u_{7}, \ldots, u_{n}$ and assign the labels $4,5, \ldots, \frac{n+1}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{n-1}$ respectively.
Case 2: n is even
Let us define $\lambda(u)=1$. Then we give the labels $1,2, \ldots, \frac{n}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{n-1}$ and assign the labels $-1,-2, \ldots, \frac{-n}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{n}$ respectively.
The following table given that this vertex labeling λ is a pair mean cordial of $F L_{n}$ for all $n \geq 4$.

Nature of n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}^{c}}$
n is odd	$\frac{n+1}{2}$	$\frac{n+1}{2}$
n is even	$\frac{n}{2}$	$\frac{n+2}{2}$

Table 1

Theorem 3.7. The sunflower graph S_{n} ia not a pair mean cordial for all $n \geq 3$.
Proof. The vertex set and edge set of S_{n} are defined in Definition 2.1. Suppose that S_{n} is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is $2 n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 2 n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(2 n-1)=2 n+1$.

Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n+1-(2 n-1)=2>1$, a contradiction.

Theorem 3.8. The flower graph $F l_{n}$ is pair mean cordial for all $n \geq 3$.
Proof. Define $V\left(F l_{n}\right)=\left\{u, u_{i}, v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(F l_{n}\right)=\left\{u u_{i}, u v_{i}, u_{i} w_{i}\right.$, $\left.v_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1, u_{n} u_{1}\right\}$. Then it has $3 n+1$ vertices and $5 n$ edges. We have the following two cases:
Case 1: n is odd
Let $\lambda(u)=\frac{3 n+1}{2}$. Now assign the labels $3,6, \ldots, \frac{3 n-3}{2}$ to the vertices u_{1}, u_{3}, \ldots, u_{n-2} respectively and assign the labels $-2,-5, \ldots, \frac{-3 n+5}{2}$ respectively to the vertices $u_{2}, u_{4}, \ldots, u_{n-1}$. Then we assign the label $\frac{-3 n+1}{2}$ to the vertex u_{n}. Next we assign the labels $2,5, \ldots, \frac{3 n-5}{2}$ to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ respectively and assign the labels $-3,-6, \ldots, \frac{-3 n+3}{2}$ respectively to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$. Furthermore assign the label $\frac{-3 n-1}{2}$ to the vertex v_{n}. We assign the labels $-1,-4, \ldots, \frac{-3 n+7}{2}$ to the vertices $w_{1}, w_{3}, \ldots, w_{n-2}$ respectively and assign the labels $4,7, \ldots, \frac{3 n-1}{2}$ respectively to the vertices $w_{2}, w_{4}, \ldots, w_{n-1}$. Finally assign the label 1 to the vertex w_{n}.
Case 2: n is even
Let $\lambda(u)=\frac{-3 n+4}{2}$. Give the labels $3,6, \ldots, \frac{3 n}{2}$ to the vertices $u_{1}, u_{3}, \ldots, u_{n-1}$ respectively and also give the labels $-2,-5, \ldots, \frac{-3 n+2}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{n}$ respectively. We now give the labels $2,5, \ldots, \frac{3 n-2}{2}$ to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ respectively and give the labels $-3,-6, \ldots, \frac{-3 n}{2}$ respectively to the vertices $v_{2}, v_{4}, \ldots, v_{n}$. Furthermore we give the labels $-1,-4, \ldots, \frac{-3 n+4}{2}$ to the vertices $w_{1}, w_{3}, \ldots, w_{n-1}$ respectively and give the labels $4,7, \ldots, \frac{3 n-4}{2}$ respectively to the vertices $w_{2}, w_{4}, \ldots, w_{n-2}$. Finally assign the label 1 to the vertex w_{n}.
The following table given that this vertex labeling λ is a pair mean cordial of $F l_{n}$ for all $n \geq 3$.

Nature of n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}^{c}}$
n is odd	$\frac{5 n-1}{2}$	$\frac{5 n+1}{2}$
n is even	$\frac{5 n}{2}$	$\frac{5 n}{2}$

Table 2

Theorem 3.9. The tadpole graph $T(m, n)$ is pair mean cordial for all $m \geq 3$ and $n \geq 1$ and except for $m=3$ and $n=1$.
Proof. Let $V(T(m, n))=\left\{u_{i}: 1 \leq i \leq m\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\}$ and $E(T(m, n))=$ $\left\{u_{i} u_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{u_{m} u_{1}, u_{1} v_{1}\right\} \cup\left\{v_{j} v_{j+1}: 1 \leq j \leq n-1\right\}$. Obviously the tadpole graph $T(m, n)$ has $m+n$ vertices and $m+n$ edges. We have the following four cases:
Case 1: $m \equiv 0(\bmod 4)$

There are two subcases arises:
Subcase 1: n is odd
If $n=1$, then $\lambda\left(u_{1}\right)=1$ and if $n>1$, then $\lambda\left(u_{1}\right)=\frac{m+2}{2}$. Next we assign the labels $2,3, \ldots, \frac{m}{2}$ respectively to the vertices $u_{3}, u_{5}, \ldots, u_{m-1}$ and assign the labels $-1,-2, \ldots, \frac{-m}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m}$ respectively. Also we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and assign the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-3}$ respectively. Finally assign the labels 1,1 to the vertices v_{n-1}, v_{n} respectively.
Subcase 2: n is even
If $m=4$, then $\lambda\left(u_{1}\right)=-2$ and if $m>4$, then $\lambda\left(u_{1}\right)=\frac{m+2}{2}$. Now we give the labels $2,-1,3,-2$ respectively to the vertices $u_{2}, u_{3}, u_{4}, u_{5}$. Next we give the labels $-3,-4, \ldots, \frac{-m}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m}$ respectively and give the labels $4,5, \ldots, \frac{m}{2}$ respectively to the vertices $u_{7}, u_{9}, \ldots, u_{m-1}$. Also we give the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and give the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Finally give the label 1 to the vertex v_{n}.
Case 2: $m \equiv 1(\bmod 4)$
There are two subcases arises:
Subcase 1: n is odd
Let $\lambda\left(u_{1}\right)=\frac{-m-1}{2}$. Now we give the labels $2,-1,3,-2$ respectively to the vertices $u_{2}, u_{3}, u_{4}, u_{5}$. Next we give the labels $-3,-4, \ldots, \frac{-m+1}{2}$ to the vertices $u_{6}, u_{8}, \ldots, u_{m-1}$ respectively and give the labels $4,5, \ldots, \frac{m+1}{2}$ respectively to the vertices $u_{7}, u_{9}, \ldots, u_{m}$. Also we give the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and give the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Finally give the label 1 to the vertex v_{n}.
Subcase 2: n is even
Let $\lambda\left(u_{1}\right)=\frac{-m-1}{2}$. Next we assign the labels $2,3, \ldots, \frac{m+1}{2}$ respectively to the vertices $u_{3}, u_{5}, \ldots, u_{m}$ and assign the labels $-1,-2, \ldots, \frac{-m+1}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ respectively. We assign the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-3}$ and assign the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots$, $\frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Finally assign the labels 1,1 to the vertices v_{n-1}, v_{n} respectively.
Case 3: $m \equiv 2(\bmod 4)$
There are two subcases arises:
Subcase 1: n is odd
Let us assign the labels the vertices $u_{i}, 1 \leq i \leq m$ and $v_{j}, 1 \leq j \leq n$ as in Subcase 1 of Case 1.
Subcase 2: n is even
Let $\lambda\left(u_{1}\right)=\frac{m+2}{2}$. Then we assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ and $v_{j}, 1 \leq j \leq n$ as in Subcase 2 of Case 1.
Case 4: $m \equiv 3(\bmod 4)$
There are two subcases arises:

Subcase 1: n is odd
If $m=3$ and $n=1$, Then $T(3,1)$ is not a pair mean cordial. Suppose that $T_{3,1}$ is pair mean cordial. Now if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 1 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq 3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 3-1=2>1$, a contradiction.
If $m=3$ and $n>1$, Then we assign the labels $3,2,-1,-2$ to the vertices $u_{1}, u_{2}, u_{3}, v_{1}$ respectively. Furthermore we assign the labels $-3,-4, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ and assign the labels $4,5, \ldots, \frac{m+n}{2}$ to the vertices $v_{3}, v_{5}, \ldots, v_{n-2}$ respectively. Finally assign the label 1 to the vertex v_{n}. If $m>3$, then assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ and $v_{j}, 1 \leq j \leq n$ as in Subcase 1 of Case 2.
Subcase 2: n is even
Let us assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ and $v_{j}, 1 \leq j \leq n$ as in Subcase 2 of Case 2.
The table given below establish that this vertex labeling λ is a pair mean cordial of $T(m, n)$ for all $m \geq 3$ and $n \geq 1$ and except for $m=3$ and $n=1$.

Nature of m and n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}}$
m and n are both odd	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$
m and n are both even	$\frac{m+n}{2}$	$\frac{m+n}{2}$
m is odd and n is even	$\frac{m+n-1}{2}$	$\frac{m+n+1}{2}$

Table 3

Theorem 3.10. The Dumbbell graph $D b(m, n)$ is pair mean cordial for all $m, n \geq 3$.
Proof. Let $V(D b(m, n))=\left\{u_{i}: 1 \leq i \leq m\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\}$ and $E(D b(m, n))=$ $\left\{u_{i} u_{i+1}: 1 \leq i \leq m\right\} \cup\left\{v_{j} v_{j+1}: 1 \leq j \leq n\right\} \cup\left\{u_{m} u_{1}, u_{1} v_{1}, v_{n} v_{1}\right\}$. Then clearly the Dumbbell graph $D b m, n$ has $m+n$ vertices and $m+n+1$ edges. We have the following two cases:
Case 1: m is odd
There are two cases arises:
Subcase 1: n is odd
If $m=3$, Assign the labels $3,2,-1,-2$ to the vertices $u_{1}, u_{2}, u_{3}, v_{1}$ respectively. Also we assign the labels $\frac{m+5}{2}, \frac{m+7}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{3}, v_{5}, \ldots, v_{n-2}$ and assign the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Finally assign the label 1 to the vertex v_{n}.
If $m>3$, Give the labels $\frac{-m-1}{2}, 2-1,3,-2$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ respectively. Then we give the labels $-3,-4, \ldots, \frac{-m+1}{2}$ respectively to the vertices $u_{6}, u_{8}, \ldots, u_{m-1}$ and give the labels $4,5, \ldots, \frac{m+1}{2}$ to the vertices $u_{7}, u_{9}, \ldots, u_{m}$
respectively. Also we give the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and give the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Finally assign the label 1 to the vertex v_{n}.
Subcase 2: n is even
Assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ as in Subcase 1 of Case 1. Now we assign the labels $\frac{m+3}{2}, \frac{m+5}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-3}$ and assign the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Finally assign the labels 1,1 to the vertices $v_{n-1}, v n$ respectively.
Case 2: m is even
There are two cases arises:
Subcase 1: n is odd
If $m=4$, Assign the labels $-2,2,-1,3$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$ respectively. If $m>4$, Give the labels $\frac{m+2}{2}, 2-1,3,-2$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ respectively. Then we give the labels $-3,-4, \ldots, \frac{-m}{2}$ respectively to the vertices $u_{6}, u_{8}, \ldots, u_{m}$ and give the labels $4,5, \ldots, \frac{m}{2}$ to the vertices $u_{7}, u_{9}, \ldots, u_{m-1}$ respectively. Next we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n+1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and assign the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-3}$ respectively. Finally we assign the labels 1,1 to the vertices v_{n-1}, v_{n} respectively.

Subcase 2: n is even

Assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ as in Subcase 1 of Case 2. Now we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and assign the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n}{2}$ to the vertices v_{2}, v_{4}, \ldots, v_{n-2} respectively. Finally assign the label 1 to the vertex $v n$.
The table given below establish that this vertex labeling λ is a pair mean cordial of $D b(m, n)$ for all $m, n \geq 3$.

Nature of m and n	$\mathbb{S}_{\lambda_{1}}$	$\mathbb{S}_{\lambda_{1}^{c}}$
m and n are both odd	$\frac{m+n}{2}$	$\frac{m+n+2}{2}$
m is odd and n is even	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$
m and n are both even	$\frac{m+n}{2}$	$\frac{m+n+2}{2}$
m is odd and n is even	$\frac{m+n+1}{2}$	$\frac{m+n+1}{2}$

Table 4

Theorem 3.11. The Umbrella graph $U_{n, m}, m>2$ is pair mean cordial for all $n \geq 2, m$ is odd and $m \neq 3$ and $n>2$ and m is even.

Proof. Let $V\left(U_{n, m}\right)=\left\{u_{i}: 1 \leq i \leq m\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\}$ and $E\left(U_{n, m}\right)=$ $\left\{u_{i} u_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{u_{i} v_{1}: 1 \leq i \leq m\right\} \cup\left\{v_{j} v_{j+1}: 1 \leq j \leq n-1\right\}$. Clearly $U_{n, m}$ has $m+n$ vertices and $2 m+n-2$ edges. Then we have the following four cases:

Case 1: $m \equiv 0(\bmod 4)$
There are two subcases arises:
Subcase 1: n is even
If $n=2, U_{n, m}$ is not pair mean cordial. Suppose that $U_{n, m}$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is $m-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq m-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq m+n-1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-1-(m-1)=$ $n=2>1$, a contradiction.
If $n>2$, then we assign the labels $2,3, \ldots, \frac{m+2}{2}$ to the vertices $u_{1}, u_{3}, \ldots, u_{m-1}$ respectively and assign the labels $-1,-2, \ldots, \frac{-m}{2}$ respectively to the vertices $u_{2}, u_{4}, \ldots, u_{m}$. Now we give the labels $\frac{m+4}{2}, \frac{-m-2}{2}$ to the vertices v_{1}, v_{2} respectively and give the labels $\frac{-m-4}{2}, \frac{-m-6}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{3}, v_{5}, \ldots, v_{n-1}$. Furthermore we give the labels $\frac{m+6}{2}, \frac{m+8}{2}, \ldots, \frac{m+n}{2}$ to the vertices $v_{4}, v_{6}, \ldots, v_{n-2}$ respectively and assign the label 1 to the vertex v_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{2 m+n-2}{2}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}$.

Subcase 2: n is odd

As in Subcase 1, assign the labels to the vertices $u_{i}, 1 \leq i \leq m$. Next we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ respectively and we give the labels $\frac{m+4}{2}, \frac{m+6}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{2}, v_{4}, \ldots, v_{n-3}$. Finally assign the labels 1,1 to the vertices v_{n-1}, v_{n} respectively. Thus $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{2 m+n-3}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{2 m+n-1}{2}$
Case 2: $m \equiv 1(\bmod 4)$
There are two subcases arises:
Subcase 1: n is even
If $n=2$, let us assign the labels $2,3, \ldots, \frac{m+1}{2}$ to the vertices $u_{1}, u_{3}, \ldots, u_{m-2}$ respectively and assign the labels $-1,-2, \ldots, \frac{-m+1}{2}$ respectively to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ and assign the label $\frac{-m-1}{2}$ to the vertex u_{m}. Furthermore we give the labels $\frac{m+1}{2}, 1$ to the vertices v_{1}, v_{2} respectively.
If $n>2$, first assign the labels $2,3, \ldots, \frac{m+3}{2}$ to the vertices $u_{1}, u_{3}, \ldots, u_{m}$ respectively. Next we assign the labels $-1,-2, \ldots, \frac{-m+1}{2}$ respectively to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ and assign the label $\frac{-m-1}{2}$ to the vertex v_{1}. Now we give the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n+1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively and give the labels $\frac{m+5}{2}, \frac{m+7}{2}, \ldots, \frac{m+n-1}{2}$ respectively to the vertices $v_{3}, v_{5}, \ldots, v_{n-3}$. Finally give the labels 1,1 to the vertices v_{n}, v_{n-1} respectively. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{2 m+n-2}{2}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}$.
Subcase 2: n is odd
As in subcase 1 of Case 2, assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ and v_{1}. We now give the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Furthermore we give the labels $\frac{m+5}{2}, \frac{m+7}{2}, \ldots, \frac{m+n}{2}$ respectively to the vertices $v_{3}, v_{5}, \ldots, v_{n-2}$ and finally give the label 1 to the vertex v_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{2 m+n-3}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{2 m+n-1}{3}$.
Case 3: $m \equiv 2(\bmod 4)$
As in Case 1, assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ and $v_{j}, 1 \leq j \leq n$.

Case 4: $m \equiv 3(\bmod 4)$
If $m=3$ and $n=2, U_{3,2}$ is not pair mean cordial. Suppose that $U_{3,2}$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 2 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 2$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq 4$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 4-2=2>1$, a contradiction. If $m>3$, As in Case 2, assign the labels to the vertices $u_{i}, 1 \leq i \leq m$ and $v_{j}, 1 \leq j \leq n$.

Theorem 3.12. The Butterfly graph $B(m, n)$ is pair mean cordial for all $m, n \geq$ 2.

Proof. Let $V(B(m, n))=\left\{u_{i}, v_{j}, u, v, w: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E(B(m, n))$ $=\left\{u w, v w, w u_{i}, w v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{j} v_{j+1}: 1 \leq i \leq\right.$ $m-1$ and $1 \leq j \leq n-1\}$. Then the Butterfly graph $B(m, n)$ has $m+n+3$ vertices and $2(m+n)$ edges. We have the following two cases:
Case 1: m is odd
There are two subcases arises:
Subcase 1: n is odd
Let $\lambda(u)=1, \lambda(v)=\frac{-m-n-2}{2}$ and $\lambda(w)=\frac{-m-1}{2}$. Now we assign the labels $2,3, \ldots, \frac{m+3}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m}$ and assign the labels $-1,-2, \ldots, \frac{-m+1}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m-1}$ respectively. Next we assign the labels $\frac{m+5}{2}, \frac{m+7}{2}, \ldots, \frac{m+n+2}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-2}$ and assign the labels $\frac{2}{\frac{2}{2}-3} \frac{2}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Finally assign the label $\frac{m+n+2}{2}$ to the vertex v_{n}.
Subcase 2: n is even
Let $\lambda(v)=\frac{-m-n-3}{2}$. We give the labels to the vertices $u_{j}, u, w: 1 \leq j \leq m$ as in Subcase 1 of Case 1. Next we give the labels $\frac{m+5}{2}, \frac{m+7}{2}, \ldots, \frac{m+n+3}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and give the labels $\frac{-m-3}{2}, \frac{-m-5}{2}, \ldots, \frac{-m-n-1}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n}$ respectively.
Case 2: m is even
There are two subcases arises:
Subcase 1: n is odd
Let $\lambda(u)=1, \lambda(v)=\frac{-m-n-3}{2}$ and $\lambda(w)=\frac{m+4}{2}$. Then we assign the labels $2,3, \ldots, \frac{m+2}{2}$ respectively to the vertices $u_{1}, u_{3}, \ldots, u_{m-1}$ and assign the labels $-1,-2, \ldots, \frac{-m}{2}$ to the vertices $u_{2}, u_{4}, \ldots, u_{m}$ respectively. Finally we assign the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n-1}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n}$ and assign the labels $\frac{m+6}{2}, \frac{m+8}{2}, \ldots, \frac{m+n+3}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively.
Subcase 2: n is even
Let $\lambda(v)=\frac{-m-n-2}{2}$. We give the labels to the vertices $u_{j}, u, w: 1 \leq j \leq m$ as in Subcase 1 of Case 2. Also we give the labels $\frac{-m-2}{2}, \frac{-m-4}{2}, \ldots, \frac{-m-n}{2}$ respectively to the vertices $v_{1}, v_{3}, \ldots, v_{n-1}$ and give the labels $\frac{m+6}{2}, \frac{m+8}{2}, \ldots, \frac{m+n+2}{2}$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Finally assign the label $\frac{m+n+2}{2}$ to
the vertex v_{n}. In each cases $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=m+n$.

Theorem 3.13. The Jelly fish graph $J(m, n)$ is pair mean cordial if and only if $m+n \leq 7$.

Proof. Let $V(J(m, n))=\left\{u_{1}, u_{2}, u_{3}, u_{4}, v_{i}, w_{j}: 1 \leq i \leq \operatorname{mand} 1 \leq j \leq n\right\}$ and $E(B(m, n))=\left\{u_{1} u_{3}, u_{1} u_{2}, u_{1} u_{4}, u_{2} u 3, u_{3} u_{4}, u_{2} v_{i}, u_{4} w_{j}: 1 \leq i \leq \operatorname{mand} 1 \leq j \leq\right.$ $n\}$. Clearly the Jelly fish graph $J(m, n)$ has $m+n+4$ vertices and $m+n+5$ edges. We have the following two cases:
Case 1: $m+n>7$
There are two subcases arises:
Subcase 1: $m+n$ is even
Suppose that $J m, n$ is pair mean cordial. Then if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 5 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 5$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-5=m+n$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-5 \geq 3>1$, a contradiction.
Subcase 2: $m+n$ is odd
Suppose that $J m, n$ is pair mean cordial. Then if the edge $u v$ get the label 1, the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 6 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 6$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-6=m+n-1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-7 \geq 2>1$, a contradiction.
Case 2: $m+n \leq 7$
There are six subcases arises:
Subcase 1: $m=1$ Then $n \leq 6$. Let $\lambda\left(u_{1}\right)=3, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=-2$ and $\lambda\left(v_{1}\right)=2$.

Nature of n	u_{4}	v_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}
$n=1$	-3	1					
$n=2$	1	-3	1				
$n=3$	-3	-4	4	1			
$n=4$	4	-3	-4	1	1		
$n=5$	4	-3	-4	-5	5	1	
$n=6$	4	-3	-4	-5	5	-3	1

Table 5

Hence if n is odd, $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n+5}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+7}{2}$ and if n is even, $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+6}{2}$ Subcase 2: $m=2$
Then $n \leq 5$. Let $\lambda\left(u_{1}\right)=3, \lambda\left(u_{2}\right)=-1, \lambda\left(v_{1}\right)=1$ and $\lambda\left(v_{2}\right)=2$.
Hence if n is odd, $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+7}{2}$ and if n is even, $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n+6}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+8}{2}$.
Subcase 3: $m=3$
Then $n \leq 4$. Let $\lambda\left(u_{1}\right)=-2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=4, \lambda\left(u_{4}\right)=-3, \lambda\left(v_{1}\right)=1$, $\lambda\left(v_{2}\right)=2$ and $\lambda\left(v_{3}\right)=3$.

Nature of n	u_{3}	u_{4}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}
$n=1$	-3	-2	3				
$n=2$	-2	-3	4	-4			
$n=3$	-2	4	-3	-4	1		
$n=4$	-2	4	-3	-4	-5	5	
$n=5$	-2	4	-3	-4	-5	5	-3

Table 6

Nature of n	w_{1}	w_{2}	w_{3}	w_{4}
$n=1$	-4			
$n=2$	-4	4		
$n=3$	-4	-5	5	
$n=4$	-4	-5	5	4

Table 7

Hence if n is odd, $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n+7}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+9}{2}$ and if n is even, $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+8}{2}$.
Subcase 4: $m=4$
Then $n \leq 3$. Let $\lambda\left(u_{1}\right)=-2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=4, \lambda\left(u_{4}\right)=-3, \lambda\left(v_{1}\right)=1$, $\lambda\left(v_{2}\right)=2, \lambda\left(v_{3}\right)=3$ and $\lambda\left(v_{4}\right)=-4$.

Nature of n	w_{1}	w_{2}	w_{3}
$n=1$	4		
$n=2$	-5	5	
$n=3$	-5	5	5

Table 8

Hence if n is odd, $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+9}{2}$ and if n is even, $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n+8}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+10}{2}$. Subcase 5: $m=5$
Then $n \leq 2$. Let $\lambda\left(u_{1}\right)=-2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=4, \lambda\left(u_{4}\right)=-3, \lambda\left(v_{1}\right)=1$, $\lambda\left(v_{2}\right)=2, \lambda\left(v_{3}\right)=3, \lambda\left(v_{4}\right)=-4$ and $\lambda\left(v_{5}\right)=-5$.
If $n=1$, then $\lambda\left(w_{1}\right)=5$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n+9}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+11}{2}$. If $n=2$, then $\lambda\left(w_{1}\right)=5, \lambda\left(w_{2}\right)=5$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+10}{2}$.
Subcase 6: $m=6$
Then $n=1$. Let $\lambda\left(u_{1}\right)=-2, \lambda\left(u_{2}\right)=-1, \lambda\left(u_{3}\right)=4, \lambda\left(u_{4}\right)=-3, \lambda\left(v_{1}\right)=1$, $\lambda\left(v_{2}\right)=2, \lambda\left(v_{3}\right)=3, \lambda\left(v_{4}\right)=-4, \lambda\left(v_{5}\right)=-5, \lambda\left(v_{6}\right)=5$ and $\lambda\left(w_{1}\right)=4$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n+10}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+12}{2}$.
Theorem 3.14. The triangular book graph $B(3, n)$ with n pages is not a pair mean cordial for all $n>1$ and except for $n=1$ and 5 .

Proof. Let $V(B(3, n))=\left\{u, v, u_{i}: 1 \leq i \leq n\right\}$ and $E(B(3, n))=\left\{u v, u u_{i}, v u_{i}\right.$: $1 \leq i \leq n\}$. Then it has $n+2$ vertices and $2 n+1$ edges. We have the following
four cases:
Case 1: $n=1$
Let $\lambda(u)=1, \lambda(v)=1$ and $\lambda\left(u_{1}\right)=-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}}=1$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=2$.
Case 2: $2 \leq n \leq 4$
Suppose $B(3, n)$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is $n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(n-1)=n+2$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+2-(n-1)=3>1$, a contradiction.
Case 3: $n=5$
Let $\lambda(u)=-1, \lambda(v)=-2, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=3, \lambda\left(u_{3}\right)=-3, \lambda\left(u_{4}\right)=1$ and $\lambda\left(u_{5}\right)=3$. Then $\overline{\mathbb{S}}_{\lambda_{1}}=5$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=6$.
Case 4: $n>5$
There are two subcases arises:
Subcase 1: n is even
Then $n \geq 6$. Suppose $B(3, n)$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 4 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 4$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-4=$ $2 n-3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n-3-4=2 n-7 \geq 5>1$, a contradiction.
Subcase 2: n is odd
Then $n \geq 7$. Suppose $B(3, n)$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 6 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 6$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-6=$ $2 n-5$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n-5-6=2 n-11 \geq 3>1$, a contradiction.

Theorem 3.15. The quadrilateral book graph $B(4, n)$ with n pages is not a pair mean cordial for all $n \geq 1$ and except for $n=2,3$ and 4 .

Proof. Let $V(B(4, n))=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E(B(4, n))=\left\{u v, u u_{i}, v u_{i}, u_{i} v_{i}\right.$: $1 \leq i \leq n\}$. Then it has $2 n+2$ vertices and $3 n+1$ edges. We have the following three cases:
Case 1: $n=1$
Suppose $B(4, n)$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is 1 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-1=3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 3-1=2>1$, a contradiction.
Case 2: $n=2$
Let $\lambda(u)=-2, \lambda(v)=3, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=1, \lambda\left(v_{1}\right)=-1$ and $\lambda\left(v_{2}\right)=-3$. Then $\overline{\mathbb{S}}_{\lambda_{1}}=3$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=4$.
Case 3: $n=3$
Let $\lambda(u)=-2, \lambda(v)=3, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=4, \lambda\left(u_{3}\right)=1, \lambda\left(v_{1}\right)=-1$, $\lambda\left(v_{2}\right)=-3$ and $\lambda\left(v_{3}\right)=-4$. Then $\overline{\mathbb{S}}_{\lambda_{1}}=5$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=5$.
Case 4: $n=4$
Let $\lambda(u)=-2, \lambda(v)=3, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=4, \lambda\left(u_{3}\right)=5, \lambda\left(u_{4}\right)=1$,
$\lambda\left(v_{1}\right)=-1, \lambda\left(v_{2}\right)=-3, \lambda\left(v_{3}\right)=-4$ and $\lambda\left(v_{4}\right)=-5 . \quad$ Then $\overline{\mathbb{S}}_{\lambda_{1}}=6$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=7$.
Case 5: $n>4$
Then $n \geq 5$. Suppose $B(4, n)$ is pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges label 1 is $n+2$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n+2$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-(n+2)=2 n-1$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq 2 n-1-(n+2)=n-3 \geq 2>1$, a contradiction.

4. Conclusion

Cahit[2] first proposed the idea of cordial labeling of in 1987 and Cordial labeling has grown to be a popular research area in graph labeling. The various kinds of cordial labeling were studied by several authors[1,3,5,7,13,14,17-23]. The notion of mean labeling was introduced in [16] and the idea of pair difference cordial labeling was first discussed in [8]. These two ideas served as our inspiration for introducing the pair mean cordial labeling in [9]. The results of the pair mean cordial labeling of few graphs including the closed helm graph, web graph, jewel graph, sunflower graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph are presented in the current paper. Investigating the pair mean cordial labeling of scorpion graph, spider graph, generalized Peterson graph, generalized Heawood graph, cubic diamond k-chain graph is more challenging to study. Studying the pair mean cordial labeling behavior of some other special graphs such as olive tree, coconut tree, step graph, lotus graph, generalized web graph, slanting ladder graph, pappus graph, dyck graph, bloom graph, jahangir graph, shadow graph, shackle graph, tensor product graph and bull graph would be one of the open problem for future research.

Conflicts of Interest : The authors declare no conflict of interest.
Data Availability : Not applicable
Acknowledgments: The authors thank the Referee for their valuable suggestions towards the improvement of the paper.

References

1. J. Baskar Babujee and L. Shobana, Prime cordial labeling of graphs, Internat. Review on Pure and Appl. Math. 5 (2009), 277-282.
2. I. Cahit, Cordial graphs: a weaker versionof graceful and harmonious graphs, Ars comb. 23 (1987), 201-207.
3. I. Cahit, Recent results and open problems on cordial graphs, Contemporary Methods in Graph Theory, R. Bodendiek(ed.), Wissenschaftsverlag Mannheim, 1990, 209-230.
4. J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 24 (2021).
5. M. Ghebleh and R. Khoeilar, A note on H-cordial graphs, Bull. Inst. Combin. Appl. 31 (2001), 60-68.
6. F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972.
7. H.Y. Lee, H.M. Lee and G.J. Chang, Cordial labeling of graphs, Chinese J. Math. 20 (1992), 263-273.
8. R. Ponraj, A. Gayathri and S. Somasundaram, Pair difference cordial labeling of graphs, J. Math. Compt. Sci. 11 (2021), 2551-2567.
9. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs, Journal of Algorithms and Computation 54 (2022), 1-10.
10. R. Ponraj and S. Prabhu, Pair Mean Cordial labeling of some corona graphs, Journal of Indian Acad. Math. 44 (2022), 45-54.
11. R. Ponraj and S. Prabhu, Pair mean cordiality of some snake graphs, Global Journal of Pure and Applied Mathematics 18 (2022), 283-295.
12. R. Ponraj and S. Prabhu, Pair mean cordial labeling of graphs obtained from path and cycle, J. Appl. \& Pure Math. 4 (2022), 85-97.
13. O. Pechenik and J. Wise, Generalized graph cordiality, Discuss Math. Graph Th. 32 (2012), 557-567.
14. U.M. Prajapati and R.M. Gajjar, Cardiality in the context of duplication flower related graphs, Internat. J. Math. Soft Comput. 7 (2017), 90-101.
15. A. Rosa, On certain valuations of the vertices of a graph, Thoery of Graphs (Intl.Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967, 349-355.
16. S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter 26 (2003), 210-213.
17. M. Seoud and M. Aboshady, Further results on parity combination cordial labeling, J. Egyptian Math. Soc. 28 (2020), 25.
18. M.A. Seoud and A.E.I. Abdel Maqsoud, On cordial and balanced labeling of graphs, J. Egyptian Math. Soc. 7 (1999), 127-135.
19. S.C. Shee and Y.S. Ho., The cordiality of one point union of n copies of a graph, Discrete Math. 28 (1991), 73-80.
20. S.C. Shee and Y.S. Ho., The cordiality of the path union of n copies of a graph, Discrete Math. 151 (1996), 221-229.
21. M. Tuczynski, P. Wenus and K. Wesek, On cordial labeling of hypertrees, Discrete Combin. Math. Combin. Comput. 55 (2013), 109-121.
22. A. Villar, On the product cordial labelling for some crown graphs, U. South eastern Philippines, Math. Stat. Depart. Davao City, Philippines, 2013, 19-86.
23. M.Z. Youssef, On k-cordial labeling, Australas J. Combin. 43 (2009), 31-37.
R. Ponraj did his Ph.D. in Manonmaniam Sundaranar University, Tirunelveli, India. He has guided $10 \mathrm{Ph} . \mathrm{D}$. scholars and published around 170 research papers in reputed journals. He is an author of eight books for undergraduate students. His research interest in Graph Theory. He is currently an Assistant Professor at Sri Paramakalyani College, Alwarkurichi, India.

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.
e-mail: ponrajmaths@gmail.com
S. Prabhu did his M.Sc degree in Sri Kaliswari College, Sivakasi and M.Phil degree at Madurai Kamaraj University, Madurai, India. His research interest is in Graph Theory. He has published 5 research papers in reputed journals.

Research Scholar, Register number: 21121232091003, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India (Affiliated to Manonmaniam Sundaranar University, Abhishekapatti, Tirunelveli-627 012, Tamilnadu, India).
e-mail: selvaprabhu12@gmail.com

[^0]: Received March 12, 2023. Revised May 5, 2023. Accepted May 25, 2023. * Corresponding author.
 (C) 2023 KSCAM.

