• Title/Summary/Keyword: Unmanned Aerial

Search Result 1,353, Processing Time 0.021 seconds

Susceptibility of Spodoptera exigua to UVA Insecticides Using Agricultural Multi-copter on Cabbage Field (농업용 멀티콥터를 활용한 무인항공기용 작물보호제에 대한 배추 파밤나방의 약제감수성)

  • Park, Bueyong;Lee, Sang-Ku;Jeong, In-Hong;Park, Se-Keun;Lee, Sang-Bum;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.271-280
    • /
    • 2019
  • We investigated the control efficacy and phytotoxicity of unmanned aerial vehicle-applied pesticides against the insect Spodoptera exigua, a major emerging pest in Chinese cabbage. Phytotoxicity was investigated in cabbage and 7 crops cultivated in the perconducted on 8 surrounding crops including Chinese cabbage at 1 to 2 times the recommended pesticide dosage. We treated cabbage fields with spinetoram suspension concentrate (16×), methoxyfenozide, sulfoxaflor suspension concentrate (16×). Then, we used water-sensitive paper to measure the distribution pattern of falling pesticide particles and the degree of coverage. Two of the pesticides showed 97% control efficacy, however, control efficacy might differ in resistant populations. Phytotoxicity was not observed in Chinese cabbage and the 7 surrounding crops treated with 1 to 2 times the recommended pesticide dosage. Analysis of the distribution pattern of falling pesticide particles revealed that breeze caused particle diffusion. Thus, wind is an important factor affecting the uniform treatment and diffusion of multicopter-applied pesticides. It follows that setting optimal conditions is necessary for effective control and treatment.

Land Cover Classification Using UAV Imagery and Object-Based Image Analysis - Focusing on the Maseo-myeon, Seocheon-gun, Chungcheongnam-do - (UAV와 객체기반 영상분석 기법을 활용한 토지피복 분류 - 충청남도 서천군 마서면 일원을 대상으로 -)

  • MOON, Ho-Gyeong;LEE, Seon-Mi;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • A land cover map provides basic information to help understand the current state of a region, but its utilization in the ecological research field has deteriorated due to limited temporal and spatial resolutions. The purpose of this study was to investigate the possibility of using a land cover map with data based on high resolution images acquired by UAV. Using the UAV, 10.5 cm orthoimages were obtained from the $2.5km^2$ study area, and land cover maps were obtained from object-based and pixel-based classification for comparison and analysis. From accuracy verification, classification accuracy was shown to be high, with a Kappa of 0.77 for the pixel-based classification and a Kappa of 0.82 for the object-based classification. The overall area ratios were similar, and good classification results were found in grasslands and wetlands. The optimal image segmentation weights for object-based classification were Scale=150, Shape=0.5, Compactness=0.5, and Color=1. Scale was the most influential factor in the weight selection process. Compared with the pixel-based classification, the object-based classification provides results that are easy to read because there is a clear boundary between objects. Compared with the land cover map from the Ministry of Environment (subdivision), it was effective for natural areas (forests, grasslands, wetlands, etc.) but not developed areas (roads, buildings, etc.). The application of an object-based classification method for land cover using UAV images can contribute to the field of ecological research with its advantages of rapidly updated data, good accuracy, and economical efficiency.

International Law on Drone's Military use - Focuse on Proportionality and Discrimination Principles - (드론의 군사적 활용에 따른 국제법적 쟁점 - 차별의 원칙과 비례성 원칙을 중심으로-)

  • Cho, Hong-Je;Kang, Ho-Jeung
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.1
    • /
    • pp.127-152
    • /
    • 2020
  • Despite growing international cooperation for maintenance of international peace and security, wars continue to occur due to conflicted state interests. Continuing conflicts has advanced development of various weapon systems such as global integrated intelligence, surveillance and reconnaissance. However, with a big increase in the number of civilian casualties caused by the weapon systems development, the international community has also advanced diplomatic efforts to minimize deaths of civilian and military personnel. Therefore, it is essential to observe the principle of discrimination between combatants and non-combatants when operating unmanned aerial vehicles (UAVs), better known as drones. Drones have become more capable of distinguishing combatants from non-combatants due to its high-tech prowess. In the operation of drones, any parties involved in combat or the war are responsible for mounting civilian casualties. In addition, it should comply with the principle of proportionality that calls for a balance between results of such action and expected military advantage anticipated from the attack. The rule of proportionality prohibits use of military force which may be expected to cause excessive civilian harm. Drones have been able to track and monitor targets for hours and select the accurate locations of the targets. The aim is to reduce civilian losses and damage to a minimum. Drones meet the standards of Article 51.4 of the Additional Protocol.

Precise Topographic Change Study Using Multi-Platform Remote Sensing at Gomso Bay Tidal Flat (다중 원격탐사 플랫폼 기반 곰소만 갯벌 정밀 지형변화 연구)

  • Hwang, Deuk Jae;Kim, Bum-Jun;Choi, Jong-Kuk;Ryu, Joo Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.263-275
    • /
    • 2020
  • In this study, DEMs (Digital elevation model) based on LIDAR, TanDEM-X and UAV (Unmanned Aerial Vehicle) are used to analyze topographic change of Gomso tidal flat during a few years. DEM from LIDAR data was observed at 2011 by KHOA (Korean hydrographic and oceanographic agency) and DEM based on TanDEM-X data was generated at Lee and Ryu (2017). UAV data was observed at KM and KH area of Gomso tidal flat. KM area was surveyed at MAY and AUG 2019, and KH area was surveyed at APR 2018 and MAY 2019. During research period, 2011 to AUG 2019, elevation of KM area is decreased 0.24 m in average, and Chenier is retreat to landward about 130 m. In KH area, elevation is increased 0.16 m in average during research period, 2011 to MAY 2019. It is expected that multi-platform remotely sensed data can help to study accurate topographic change of tidal flat.

Flying-Wing Type UAV Design Optimization for Flight Stability Enhancement (전익기형 무인기의 비행 안정성 향상을 위한 형상 최적화 연구)

  • Seong, Dong-gyu;Juliawan, Nadhie;Tyan, Maxim;Kim, Sanho;Lee, Jae-woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.809-819
    • /
    • 2020
  • In this study, the twist angle and wing planform shapes were selected as design variables and optimized to secure the stability of the flying-wing type UAV. Flying-wing aircraft has no separated fuselage and tails, which has advantages in aerodynamic characteristics and stealth performance, but it is difficult to secure the flight stability. In this paper, the sweep back angle and twist angle were optimized to obtain the lateral stability, the static margin and wing planform shapes were optimized to improve the longitudinal stability of the flying-wing, then effect of the twist angle was confirmed by comparing the stability of the shape with the winglet and the shape with the twist angle. In the optimization formulation, focusing on improving stability, constraints were established, objective functions and design variables were set, then design variable sensitivity analysis was performed using the Sobol method. AVL was used for aerodynamic analysis and stability analysis, and SQP was used for optimization. The CFD analysis of the optimized shape and the simulation of the dynamic stability proved that the twist angle can be applied to the improvement of the lateral stability as well as the stealth performance in the flying-wing instead of the winglet.

A Study on the Establishment of Anti-Drone Concept and Effective Response System (안티드론 개념 정립 및 효과적인 대응체계 수립에 관한 연구)

  • Lee, Donghyuk;Kang, Wook
    • Korean Security Journal
    • /
    • no.60
    • /
    • pp.9-31
    • /
    • 2019
  • Due to the development of technology and popularization of drone, the so-called "dirty drone" that exploits drones for crimes and terrorism has become a social problem, and it is time to seriously consider the "revenge of drones." Indeed, the cases of threats posed by drones are expanding not only to threats to ground facilities, but also to aviation safety threats, more recently to large-scale events, demonstrations and crimes targeting specific personnel, and terrorism. This research clearly defined the concept of anti-drone when it emerged as a new type of social safety threat as it was abused in crime and terrorism, while response to it was not enough yet. Through this process, it was intended to present an effective anti-drones system. We analyzed the major controversial elements of anti-drone, and defined them as "comprehensive response activities at the legal, institutional and technical levels performed by law enforcement agencies, related technology and industrial entities in a way that prevents, detects, and blocks acts that violate public well-being and order, such as crimes and terrorism caused by the drones." To effectively respond to dirty drones, the authority of law enforcement agencies and the enactment of relevant laws were proposed. In the future, a comprehensive and systematic follow-up study of the anti system should be conducted.

Development and Comparative Analysis of Mapping Quality Prediction Technology Using Orientation Parameters Processed in UAV Software (무인기 소프트웨어에서 처리된 표정요소를 이용한 도화품질 예측기술 개발 및 비교분석)

  • Lim, Pyung-Chae;Son, Jonghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.895-905
    • /
    • 2019
  • Commercial Unmanned Aerial Vehicle (UAV) image processing software products currently used in the industry provides camera calibration information and block bundle adjustment accuracy. However, they provide mapping accuracy achievable out of input UAV images. In this paper, the quality of mapping is calculated by using orientation parameters from UAV image processing software. We apply the orientation parameters to the digital photogrammetric workstation (DPW) for verifying the reliability of the mapping quality calculated. The quality of mapping accuracy was defined as three types of accuracy: Y-parallax, relative model and absolute model accuracy. The Y-parallax is an accuracy capable of determining stereo viewing between stereo pairs. The Relative model accuracy is the relative bundle adjustment accuracy between stereo pairs on the model coordinates system. The absolute model accuracy is the bundle adjustment accuracy on the absolute coordinate system. For the experimental data, we used 723 images of GSD 5 cm obtained from the rotary wing UAV over an urban area and analyzed the accuracy of mapping quality. The quality of the relative model accuracy predicted by the proposed technique and the maximum error observed from the DPW showed precise results with less than 0.11 m. Similarly, the maximum error of the absolute model accuracy predicted by the proposed technique was less than 0.16 m.

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

Edge Response Analysis of UAV-Images Using a Slanted Target (경사 타겟을 이용한 무인항공영상의 경계반응 분석)

  • Lee, Jae One;Sung, Sang Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) photogrammetry has recently emerged as a means of obtaining highly precise and rapid spatial information due to its cost-effectiveness and high efficiency. However, current procedures or regulations for quantitative quality verification methods and certification processes for UAV-images are insufficient. In addition, the current verification method for image quality is not evaluated by an MTF (Modulation Transfer Function) analysis or edge response analysis, which can analyze the degree of contrast including image resolution, and only relies on the GSD (Ground Sample Distance) analysis. Therefore, in this study, the edge response analysis using a Slanted edge target was performed along with GSD analysis to confirm the necessity of analyzing edge response analysis in UAV-images quality analysis. Furthermore, a Matlab GUI-based software tool was developed to help streamline the edge response analysis. As a result, we confirmed the need for edge response analysis since the outputs of the edge response analysis from the same GSD had significantly different outcomes. Additionally, we found that the quality of the edge response analysis of UAV-images is proportional to the performance of the camera mounted on the UAV.