DOI QR코드

DOI QR Code

전익기형 무인기의 비행 안정성 향상을 위한 형상 최적화 연구

Flying-Wing Type UAV Design Optimization for Flight Stability Enhancement

  • Seong, Dong-gyu (Department of Aerospace Information Engineering, Konkuk University) ;
  • Juliawan, Nadhie (Department of Aerospace Information Engineering, Konkuk University) ;
  • Tyan, Maxim (Department of Aerospace Information Engineering, Konkuk University) ;
  • Kim, Sanho (Department of Aerospace Information Engineering, Konkuk University) ;
  • Lee, Jae-woo (Department of Aerospace Information Engineering, Konkuk University)
  • 투고 : 2020.07.22
  • 심사 : 2020.09.16
  • 발행 : 2020.10.01

초록

본 논문에서는 전익기형 무인기의 비행 안정성 확보를 위한 날개 평면형상 및 비틀림 각을 포함하는 형상최적화 연구를 수행하였다. 전익기는 독립된 동체와 꼬리날개가 없어 공력특성과 스텔스 성능에 장점이 있는 반면, 정적 여유 및 비행 안정성 확보가 어렵다. 본 연구에서는 가로 안정성 개선을 위하여 비틀림 각과 후퇴각을 최적화 하였으며, 세로 안정성은 정적 여유와 날개 평면형상을 최적화 하여 향상시키고자 하였다. 비틀림 각의 영향은 윙렛이 장착된 형상과 비틀림 각이 있는 형상의 안정성을 비교하여 확인하였다. 최적화 문제구성에는 안정성 개선에 초점을 두어 제약조건을 수립하고 목적함수와 설계 변수를 설정하였으며, 설정된 설계 변수에 대하여 Sobol 방법을 이용해 민감도 해석을 수행하였다. 공력해석 및 안정성 해석에는 AVL이 사용되었으며, 최적화 방법으로는 SQP를 사용하였다. 최적화 결과 형상에 대한 CFD 해석 및 동안정성 시뮬레이션을 통해 비틀림 각이 윙렛을 대신하여 전익기의 스텔스 성능 향상뿐만 아니라 비행안정성 개선에도 적용될 수 있음을 검증하였다.

In this study, the twist angle and wing planform shapes were selected as design variables and optimized to secure the stability of the flying-wing type UAV. Flying-wing aircraft has no separated fuselage and tails, which has advantages in aerodynamic characteristics and stealth performance, but it is difficult to secure the flight stability. In this paper, the sweep back angle and twist angle were optimized to obtain the lateral stability, the static margin and wing planform shapes were optimized to improve the longitudinal stability of the flying-wing, then effect of the twist angle was confirmed by comparing the stability of the shape with the winglet and the shape with the twist angle. In the optimization formulation, focusing on improving stability, constraints were established, objective functions and design variables were set, then design variable sensitivity analysis was performed using the Sobol method. AVL was used for aerodynamic analysis and stability analysis, and SQP was used for optimization. The CFD analysis of the optimized shape and the simulation of the dynamic stability proved that the twist angle can be applied to the improvement of the lateral stability as well as the stealth performance in the flying-wing instead of the winglet.

키워드

참고문헌

  1. Elhefnawy, N., "A Sixth Generation Fighter? An Overview of the Essential Background," SSRN, (July 18, 2018). Available at SSRN: https://ssrn.com/abstract=3215780.
  2. Raymer, D., Aircraft Design : A Conceptual Approach, 15th Edition, AIAA, Virginia, 2012, pp. 59-246.
  3. Nickel, K. and Wohlfahrt, M., Tailless Aircraft in theory and practice, 1st Edition, Edward Arnold, London, 1994, pp. 8-120.
  4. Qu, X., Zhang, W., Shi, J. and Lyu, Y., "A Novel Yaw Control Method for Flying-wing Aircraft in Low Speed Regime," Aerospace Science and Technology, Vol. 69, October 2017, pp. 636-649. https://doi.org/10.1016/j.ast.2017.07.036
  5. Pan, Y., Huang, J., Li, F. and Yan, C., "Integrated Design Optimization of Aero-dynamic and Stealthy Performance for Flying Wing Aircraft," Proceedings of the International Multi Conference of Engineers and Computer Scientists, Vol. 2, March 2017, pp. 1051-1056.
  6. Li, M., Bai, J., Li, L., Meng, X., Liu, Q. and Chen, B., "A gradient-based aero-stealth optimization design method for flying wing aircraft," Aerospace Science and Technology, Vol. 92, September 2019, pp. 156-169. https://doi.org/10.1016/j.ast.2019.05.067
  7. Lei, S., Hua, Y., Yang, Z., Haoyu, Z. and Jun, H., "Dihedral influence on lateral-directional dynamic stability on large aspect ratio tailless flying wing aircraft," Chinese Journal of Aeronautics, Vol. 27, August 2014, pp. 1149-1155. https://doi.org/10.1016/j.cja.2014.08.003
  8. Aircraft Design Education Research Society, Aircraft Conceptual Design, 2nd Edition, KyungMoon, Seoul, 2016, pp. 181-382.
  9. Nelson, R. C., Flight Stability and Automatic Control, 2nd Edition, McGraw-Hill education, New york, 1998, pp. 131-234.
  10. Kim, B. S., Kim, Y. D., Bang, H. C., Tak, M. J. and Hong, S. K., Flight dynamics and control, 1st Edition, KyungMoon, Seoul, 2004, pp. 15-142.
  11. Jacopo, T., "Development of a Flight Dynamic Model of a Flying Wing Configuration," Master thesis, Sapienza - University of Rome, 2014.
  12. Rosolem, R., Gupta, H. V., Shuttleworth, W. J. and Zeng, X., "A fully multiple-criteria implementation of the Sobol method for parameter sensitivity analysis," Journal of Geophysical Research, Vol. 117, April 2012, Res. 117, D07103.
  13. Seong, D. G., "Iterative Design and Verification Analysis for Stability of Flying-Wing Type Drone," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 715-718.
  14. U.S. Department of Defense, Military Specification Handbook MIL-HDBK-1797: Flying Qualities of Piloted Aircraft, 1997.
  15. Drela, M., AVL 3.36 User primer, 2017, Available at http://web.mit.edu/drela/Public/web/avl/.
  16. Boggs, P. T. and Tolle, J. W., "Sequential Quadratic Programming," Acta Numerica, Vol. 4, January 1995, pp. 1-51. https://doi.org/10.1017/S0962492900002518
  17. Pereira, R. L., "Validation of software for the calculation of aerodynamic coefficients with a focus on the software package Tornado," tech.rep., Linkoping University, 2010
  18. ANSYS Fluent Theory Guide, 2013, Available at http://www.ansys.com
  19. Python module Scipy.org, Available at https://docs.scipy.org/doc/scipy/reference/index.html