• Title/Summary/Keyword: Unknown Attack

Search Result 95, Processing Time 0.018 seconds

User Behavior Based Web Attack Detection in the Face of Camouflage (정상 사용자로 위장한 웹 공격 탐지 목적의 사용자 행위 분석 기법)

  • Shin, MinSik;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.365-371
    • /
    • 2021
  • With the rapid growth in Internet users, web applications are becoming the main target of hackers. Most previous WAFs (Web Application Firewalls) target every single HTTP request packet rather than the overall behavior of the attacker, and are known to be difficult to detect new types of attacks. In this paper, we propose a web attack detection system based on user behavior using machine learning to detect attacks of unknown patterns. In order to define user behavior, we focus on features excluding areas where an attacker can camouflage as a normal user. The experimental results shows that by using the path and query information to define users' behaviors, best results for an accuracy of 99% with Decision forest.

Implementation of a Web Service Intrusion Tolerance System based on Diversity and Redundancy (다양성과 중복성을 이용한 웹 서비스 침입감내 시스템 구현)

  • 김성기;나용희;민병준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1359-1362
    • /
    • 2003
  • The intrusions appears continuously by new unknown attacks exploiting vulnerabilities of systems or components but there are no perfect solutions to protect this unknown attacks. To overcome this problem, in this paper, we have proposed and implemented a Web service intrusion tolerant system that provides continuous Web services to the end users transparently even after the occurrence of an attack against the Web services, and prevents the disclosure of system's configuration data from server Our system has an N+l node architecture which is to minimize the number of redundant server nodes and to tolerate the intrusion effectively, and it also supports diversity in its design. Experimental result obtained on an implemented system show that our system can cope with intrusion such as DoS, file modification, confidentiality compromise of system properly.

  • PDF

Negative Selection Algorithm based Multi-Level Anomaly Intrusion Detection for False-Positive Reduction (과탐지 감소를 위한 NSA 기반의 다중 레벨 이상 침입 탐지)

  • Kim, Mi-Sun;Park, Kyung-Woo;Seo, Jae-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.111-121
    • /
    • 2006
  • As Internet lastly grows, network attack techniques are transformed and new attack types are appearing. The existing network-based intrusion detection systems detect well known attack, but the false-positive or false-negative against unknown attack is appearing high. In addition, The existing network-based intrusion detection systems is difficult to real time detection against a large network pack data in the network and to response and recognition against new attack type. Therefore, it requires method to heighten the detection rate about a various large dataset and to reduce the false-positive. In this paper, we propose method to reduce the false-positive using multi-level detection algorithm, that is combine the multidimensional Apriori algorithm and the modified Negative Selection algorithm. And we apply this algorithm in intrusion detection and, to be sure, it has a good performance.

An Implementation of Mining Prototype System for Network Attack Analysis (네트워크 공격 분석을 위한 마이닝 프로토타입 시스템 구현)

  • Kim, Eun-Hee;Shin, Moon-Sun;Ryu, Keun-Ho
    • The KIPS Transactions:PartC
    • /
    • v.11C no.4
    • /
    • pp.455-462
    • /
    • 2004
  • Network attacks are various types with development of internet and are a new types. The existing intrusion detection systems need a lot of efforts and costs in order to detect and respond to unknown or modified attacks because of detection based on signatures of known attacks. In this paper, we present a design and implementation for mining prototype system to predict unknown or modified attacks through network protocol attributes analysis. In order to analyze attributes of network protocols, we use the association rule and the frequent episode. The collected network protocols are storing schema of TCP, UDP, ICMP and integrated type. We are generating rules that can predict the types of network attacks. Our mining prototype in the intrusion detection system aspect is useful for response against new attacks as extra tool.

A Unknown Phishing Site Detection Method in the Interior Network Environment (내부 네트워크에서 알려지지 않은 피싱사이트 탐지방안)

  • Park, Jeonguk;Cho, Gihwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.313-320
    • /
    • 2015
  • While various phishing attacks are getting to be increased in constant, their response methods still stay on the stage of responding after identifying an attack. To detect a phishing site ahead of an attack, a method has been suggested with utilizing the Referer header field of HTTP. However, it has a limitation to implement a traffic gathering system for each of prospective target hosts. This paper presents a unknown phishing site detection method in the Interior network environment. Whenever a user try to connect a phishing site, its traffic is pre-processed with considering of the characteristics of HTTP protocol and phishing site. The phishing site detection phase detects a suspicious site under phishing with analysing HTTP content. To validate the proposed method, some evaluations were conducted with 100 phishing URLs along with 100 normal URLs. The experimental results show that our method achieves higher phishing site detection rate than that of existing detection methods, as 66% detection rate for the phishing URLs, and 0% false negative rate for the normal URLs.

Reinforcement Learning-Based APT Attack Response Technique Utilizing the Availability Status of Assets (방어 자산의 가용성 상태를 활용한 강화학습 기반 APT 공격 대응 기법)

  • Hyoung Rok Kim;Changhee Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1021-1031
    • /
    • 2023
  • State-sponsored cyber attacks are highly impactful because they are carried out to achieve pre-planned goals. As a defender, it is difficult to respond to them because of the large scale of the attack and the possibility that unknown vulnerabilities may be exploited. In addition, overreacting can reduce the availability of users and cause business disruption. Therefore, there is a need for a response policy that can effectively defend against attacks while ensuring user availability. To solve this problem, this paper proposes a method to collect the number of processes and sessions of defense assets in real time and use them for learning. Using this method to learn reinforcement learning-based policies on a cyber attack simulator, the attack duration based on 100 time-steps was reduced by 27.9 time-steps and 3.1 time-steps for two attacker models, respectively, and the number of "restore" actions that impede user availability during the defense process was also reduced, resulting in an overall better policy.

A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection (알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템)

  • Shin, Gun-Yoon;Kim, Dong-Wook;Yun, Jiyoung;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2021
  • With the development of the Internet, various IT technologies such as IoT, Cloud, etc. have been developed, and various systems have been built in countries and companies. Because these systems generate and share vast amounts of data, they needed a variety of systems that could detect threats to protect the critical data contained in the system, which has been actively studied to date. Typical techniques include anomaly detection and misuse detection, and these techniques detect threats that are known or exhibit behavior different from normal. However, as IT technology advances, so do technologies that threaten systems, and these methods of detection. Advanced Persistent Threat (APT) attacks national or companies systems to steal important information and perform attacks such as system down. These threats apply previously unknown malware and attack technologies. Therefore, in this paper, we propose a hybrid intrusion detection system that combines anomaly detection and misuse detection to detect unknown threats. Two detection techniques have been applied to enable the detection of known and unknown threats, and by applying machine learning, more accurate threat detection is possible. In misuse detection, we applied Classification based on Association Rule(CBA) to generate rules for known threats, and in anomaly detection, we used One-Class SVM(OCSVM) to detect unknown threats. Experiments show that unknown threat detection accuracy is about 94%, and we confirm that unknown threats can be detected.

Detecting ShellCode Using Entropy (엔트로피를 이용한 ShellCode 탐지 방법)

  • Kim, Woosuk;Kang, Sunghoon;Kim, Kyungshin;Kim, Seungjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.3
    • /
    • pp.87-96
    • /
    • 2014
  • Hackers try to achieve their purpose in a variety of ways, such as operating own website and hacking a website. Hackers seize a large amount of private information after they have made a zombie PC by using malicious code to upload the website and it would be used another hacking. Almost detection technique is the use Snort rule. When unknown code and the patterns in IDS/IPS devices are matching on network, it detects unknown code as malicious code. However, if unknown code is not matching, unknown code would be normal and it would attack system. Hackers try to find patterns and make shellcode to avoid patterns. So, new method is needed to detect that kinds of shellcode. In this paper, we proposed a noble method to detect the shellcode by using Shannon's information entropy.

Cybertrap : Unknown Attack Detection System based on Virtual Honeynet (Cybertrap : 가상 허니넷 기반 신종공격 탐지시스템)

  • Kang, Dae-Kwon;Hyun, Mu-Yong;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.863-871
    • /
    • 2013
  • Recently application of open protocols and external network linkage to the national critical infrastructure has been growing with the development of information and communication technologies. This trend could mean that the national critical infrastructure is exposed to cyber attacks and can be seriously jeopardized when it gets remotely operated or controlled by viruses, crackers, or cyber terrorists. In this paper virtual Honeynet model which can reduce installation and operation resource problems of Honeynet system is proposed. It maintains the merits of Honeynet system and adapts the virtualization technology. Also, virtual Honeynet model that can minimize operating cost is proposed with data analysis and collecting technique based on the verification of attack intention and focus-oriented analysis technique. With the proposed model, new type of attack detection system based on virtual Honeynet, that is Cybertrap, is designed and implemented with the host and data collecting technique based on the verification of attack intention and the network attack pattern visualization technique. To test proposed system we establish test-bed and evaluate the functionality and performance through series of experiments.

Threat Management System for Anomaly Intrusion Detection in Internet Environment (인터넷 환경에서의 비정상행위 공격 탐지를 위한 위협관리 시스템)

  • Kim, Hyo-Nam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.157-164
    • /
    • 2006
  • The Recently, most of Internet attacks are zero-day types of the unknown attacks by Malware. Using already known Misuse Detection Technology is hard to cope with these attacks. Also, the existing information security technology reached the limits because of various attack's patterns over the Internet, as web based service became more affordable, web service exposed to the internet becomes main target of attack. This paper classifies the traffic type over the internet and suggests the Threat Management System(TMS) including the anomaly intrusion detection technologies which can detect and analyze the anomaly sign for each traffic type.

  • PDF