• Title/Summary/Keyword: Uniformly convex

Search Result 118, Processing Time 0.028 seconds

CONVERGENCE THEOREMS OF A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE MAPPINGS IN BANACH SPACES

  • Saluja, Gurucharan Singh
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2011
  • In this paper, we study multi-step iterative algorithm with errors and give the necessary and sufficient condition to converge to com mon fixed points for a finite family of asymptotically quasi-nonexpansive type mappings in Banach spaces. Also we have proved a strong convergence theorem to converge to common fixed points for a finite family said mappings on a nonempty compact convex subset of a uniformly convex Banach spaces. Our results extend and improve the corresponding results of [2, 4, 7, 8, 9, 10, 12, 15, 20].

ON A CERTAIN CLASS OF p-VALENT UNIFORMLY CONVEX FUNCTIONS USING DIFFERENTIAL OPERATOR

  • Lee, S.K.;Khairnar, S.M.;Rajas, S.M.
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • In this paper, using differential operator, we have introduce new class of p-valent uniformly convex functions in the unit disc U = {z : |z| < 1} and obtain the coefficient bounds, extreme bounds and radius of starlikeness for the functions belonging to this generalized class. Furthermore, partial sums $f_k(z)$ of functions $f(z)$ in the class $S^*({\lambda},{\alpha},{\beta})$ are considered. The various results obtained in this paper are sharp.

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo;Park, Jong-Seo;Park, Eun-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • Let E be a uniformly convex Banach space with a uniformly G$\hat{a}teaux differentiable norm, C a nonempty closed convex subset of $E, T : C \to E$ a nonexpansive mapping, and Q a sunny nonexpansive retraction of E onto C. For $u \in C$ and $t \in (0,1)$, let $x_t$ be a unique fixed point of a contraction $R_t : C \to C$, defined by $R_tx = Q(tTx + (1-t)u), x \in C$. It is proved that if ${x_t}$ is bounded, then the strong $lim_{t\to1}x_t$ exists and belongs to the fixed point set of T. Furthermore, the strong convergence of ${x_t}$ in a reflexive and strictly convex Banach space with a uniformly G$\hat{a}$teaux differentiable norm is also given in case that the fixed point set of T is nonempty.

  • PDF

A NEW ITERATION METHOD FOR FIXED POINT OF NONEXPANSIVE MAPPING IN UNIFORMLY CONVEX BANACH SPACE

  • Omprakash, Sahu;Amitabh, Banerjee;Niyati, Gurudwan
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.665-678
    • /
    • 2022
  • The aim of this paper is to introduce a new iterative process and show that our iteration scheme is faster than other existing iteration schemes with the help of numerical examples. Next, we have established convergence and stability results for the approximation of fixed points of the contractive-like mapping in the framework of uniformly convex Banach space. In addition, we have established some convergence results for the approximation of the fixed points of a nonexpansive mapping.

CONVERGENCE THEOREMS FOR GENERALIZED α-NONEXPANSIVE MAPPINGS IN UNIFORMLY HYPERBOLIC SPACES

  • J. K. Kim;Samir Dashputre;Padmavati;Rashmi Verma
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • In this paper, we establish strong and ∆-convergence theorems for new iteration process namely S-R iteration process for a generalized α-nonexpansive mappings in a uniformly convex hyperbolic space and also we show that our iteration process is faster than other iteration processes appear in the current literature's. Our results extend the corresponding results of Ullah et al. [5], Imdad et al. [16] in the setting of uniformly convex hyperbolic spaces and many more in this direction.

WEAK AND STRONG CONVERGENCE OF THREE-STEP ITERATIONS WITH ERRORS FOR TWO ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.325-336
    • /
    • 2008
  • In this paper, we prove the weak and strong convergence of the three-step iterative scheme with errors to a common fixed point for two asymptotically nonexpansive mappings in a uniformly convex Banach space under a condition weaker than compactness. Our theorems improve and generalize some previous results.

  • PDF

CONVERGENCE OF MODIFIED MULTI-STEP ITERATIVE FOR A FINITE FAMILY OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS

  • Xiao, Juan;Deng, Lei;Yang, Ming-Ge
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.83-95
    • /
    • 2014
  • In a uniformly convex Banach space, we introduce a iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings and utilize a new inequality to prove several convergence results for the iterative sequence. The results generalize and unify many important known results of relevant scholars.

CONVERGENCE THEOREMS OF MULTI-STEP ITERATIVE SCHEMES WITH ERRORS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE TYPE NONSELF MAPPINGS

  • Kim, Jong-Kyu;Saluja, G.S.;Nashine, H.K.
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.81-93
    • /
    • 2010
  • In this paper, a strong convergence theorem of multi-step iterative schemes with errors for asymptotically quasi-nonexpansive type nonself mappings is established in a real uniformly convex Banach space. Our results extend the corresponding results of Wangkeeree [12], Xu and Noor [13], Kim et al.[1,6,7] and many others.