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CONVERGENCE OF MODIFIED MULTI-STEP ITERATIVE

FOR A FINITE FAMILY OF ASYMPTOTICALLY

QUASI-NONEXPANSIVE MAPPINGS

Juan Xiao, Lei Deng, and Ming-ge Yang

Abstract. In a uniformly convex Banach space, we introduce a iterative
scheme for a finite family of asymptotically quasi-nonexpansive mappings
and utilize a new inequality to prove several convergence results for the it-
erative sequence. The results generalize and unify many important known
results of relevant scholars.

1. Introduction and preliminaries

Let E be a Banach space, K be a nonempty closed convex subset of E, T
be a self-mapping of K and F (T ) denotes the set of fixed points of T .

Definition 1.1 ([8]). T is called asymptotically nonexpansive mapping if there
exists a sequence un ∈ [0,∞), limn→∞ un = 0, such that ‖T nx − T ny‖ ≤
(1 + un)‖x− y‖ for all n ∈ N and x, y ∈ K.

Definition 1.2 ([16]). T is called asymptotically quasi-nonexpansive mapping
if there exists a sequence un ∈ [0,∞), limn→∞ un = 0, such that ‖T nx− p‖ ≤
(1 + un)‖x− p‖ for all n ∈ N, and x ∈ K, p ∈ F (T ), where F (T ) 6= ∅.

Definition 1.3 ([15]). E is said to satisfy Opial’s condition if for any sequence
xn ∈ E, xn ⇀ x implies that lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn − y‖ for
all y ∈ E with y 6= x, where xn ⇀ x denotes that {xn} converges weakly to x.

Definition 1.4 ([12]). A mapping T with domain D(T ) and range R(T ) in E

is said to be semi-closed at p if whenever {xn} is a sequence in D(T ) such that
{xn} converges weakly to x∗ ∈ D(T ) and {Txn} converges strongly to p, then
Tx∗ = p.
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Definition 1.5 ([6]). A finite family {Ti}mi=1 of self-mappings of K is said to
satisfy condition (B) if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0, f(r) > 0 for all r ∈ (0,∞), such that max1≤i≤m ‖x − Tix‖ ≥
f(d(x, F )) for all x ∈ K where F =

⋂m

i=1 F (Ti) 6= ∅ and d(x, F ) = infx∗∈F ‖x−
x∗‖.

In [1], [3] and [6], authors introduced several Modified multi-step iterations
weakly and strongly converges to a common fixed point for a finite family of
nonexpansive mappings or asymptotically quasi-nonexpansive mappings.

In [13], the author introduced the Modified multi-step iteration and proved
that the sequence {xn} defined by (1) converges to a common fixed point of a
continuous and strongly pseudocontractive operator in Banach spaces.

(1)























x1 ∈ E,

xn+1 = (1− β1
n)xn + β1

nTy
1
n,

yin = (1− βi+1
n )xn + βi+1

n Tyi+1
n , i = 1, 2, . . . ,m− 2,

ym−1
n = (1− βm

n )xn + βm
n Txn, m ≥ 2,

where the sequences {βi
n}

∞
n=1 ⊆ [0, 1], i = 1, 2, . . . ,m satisfy certain conditions.

In this paper, we generalize the iterative processes (1) to the following iter-
ative process:

Let K be a nonempty closed convex subset of a Banach space E and T1, T2,
. . . , Tm : K → K be a finite family of asymptotically quasi-nonexpansive map-
pings. Then, the iterative sequence {xn} defined by the iterative scheme:

(2)























xj ∈ E (j = 1, 2, . . . , r),

xn+1 = (1− β1
n)xn−q1 + β1

nT
n
1 y

1
n,

yin = (1− βi+1
n )xn−qi+1

+ βi+1
n T n

i+1y
i+1
n , i = 1, 2, . . . ,m− 2,

ym−1
n = (1− βm

n )xn−qm + βm
n T n

mxn, m ≥ 2, n ≥ r,

where {βi
n}

m
i=1 ⊂ [δ, 1 − δ] with δ ∈ (0, 1), {qi}mi=1 is a nonnegative integer

sequence in [0, r] and r, m ∈ N are fixed numbers.

Remark 1. In (2), taking r = 1, {T n
i }

m
i=1 = T and {qi}mi=1 = 0 for all n ≥ 1,

then we get (1). So the sequence {xn} defined by (2) extend the sequence {xn}
defined by (1).

Remark 2. The class of asymptotically quasi-nonexpansive mappings is a gen-
eralization of the class of nonexpansive mappings and asymptotically nonex-
pansive mappings.

In a uniformly convex Banach spaces, we introduce a new inequality and
prove that the sequence {xn} defined by (2) weakly and strongly converges to
a common fixed point for a finite family of asymptotically quasi-nonexpansive
mappings, finally we obtain several corollaries. Our results generalize and unify
the corresponding results of relevant scholars [1, 2, 3, 4, 5, 6, 10, 13, 20].
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2. Lemmas

We need the following lemmas to prove our main results.

Lemma 1 ([1]). Let {an}∞n=1 and {ln}∞n=1 be two nonnegative real sequences

satisfying

an+1 ≤ (1 + ln)an, ∀ n ∈ N.

where
∑∞

n=1 ln < +∞, then limn→∞ an exists.

Lemma 2. Let {an} and {l
(i)
n }m−1

i=0 be sequences of nonnegative real numbers

such that

(3) an+1 ≤ l(0)n an +

m
∑

i=1

l(i)n an−qi , (n ≥ r)

where {qi}mi=1 is a nonnegative integer sequence in [0, r] and r,m ∈ N are fixed

numbers. If lim infn→∞ l
(0)
n > 0 and

∑∞

n=1 cn < ∞, where

cn =















0,
m
∑

i=0

l
(i)
n ≤ 1;

m
∑

i=0

l
(i)
n − 1,

m
∑

i=0

l
(i)
n > 1,

then limn→∞ an exists.

Proof. Let {bn}∞n=1 be a sequence defined by

bn =

{

an, n = 1, 2, . . . , r;
max{an−r, an−r+1, . . . , an}, n = r + 1, r + 2, . . . .

Using (3), we obtain

an+1 ≤ l(0)n an +

m
∑

i=1

l(i)n an−qi ≤ l(0)n bn +

m
∑

i=1

l(i)n bn

≤ (1 + cn)bn, n = r + 1, r + 2, . . . .

Thus,

bn+1 = max{an−r+1, an−r+2, . . . , an+1}

≤ max{an−r, an−r+1, an−r+2, . . . , an, an+1}

≤ max{bn, an+1}

≤ (1 + cn)bn, n = r + 1, r + 2, . . . .

Since
∑∞

n=1 cn < ∞, by Lemma 1, we obtain limn→∞ bn exists.
Suppose limn→∞ bn = a. Next, we will prove {an}∞n=1 also converges to a.
By the definition of {bn}

∞
n=1, we get an ≤ bn for all n ∈ N. If a = 0, then

it is easy to obtain {an} also converges to 0. If a 6= 0, suppose that {an}∞n=1

does not converge to a. Since limn→∞ bn = a, it is easy to find ξ > 0 such that
for all j > 0, there exists nj > j satisfying

anj
< a− ξ.(4)
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As lim infn→∞ l
(0)
n > 0, then there exist θ ∈ (0, 1) and N > 0 such that for all

n ≥ N

l(0)n ≥ θ.(5)

Let ε = min
{

(1−θ)θrξ

2−θ−θr , 2a
}

. By limn→∞ bn = a and limn→∞ cn = 0, then

there exists Nε > N such that for all n ≥ Nε

a−
ε

4
< bn < a+

ε

4
, cn <

ε

2a
≤ 1.(6)

By (4), there exists n0 ≥ Nε+2r+1(n0−r ≥ Nε+r+1), such that an0−r < a−ξ.
From (3), (5) and (6), we have

an0−r+1 ≤ l
(0)
n0−ran0−r +

m
∑

i=1

l
(i)
n0−ran0−r−qi

< l
(0)
n0−r(a− ξ) +

m
∑

i=1

l
(i)
n0−r

(

a+
ε

4

)

< (1 + cn0−r)a− l
(0)
n0−rξ + (1 + cn0−r)

ε

4
< a− θξ + ε.(7)

Further, by (7), we obtain

an0−r+2 ≤ l
(0)
n0−r+1an0−r+1 +

m
∑

i=1

l
(i)
n0−r+1an0−r+1−qi

< l
(0)
n0−r+1(a− θξ + ε) +

m
∑

i=1

l
(i)
n0−r+1

(

a+
ε

4

)

< (1 + cn0−r+1)a− l
(0)
n0−r+1(θξ − ε) + (1 + cn0−r+1)

ε

4

< a− θ2ξ + (θ + 1)ε.

Continuously, we can prove that

an0−r+i < a− θiξ +

(

1− θi

1− θ

)

ε, i = 0, 1, . . . , r.(8)

It follows from (8) and ε ≤
(1 − θ)θrξ
2− θ − θr

that

an0−r+i < a− θiξ +

(

1− θi

1− θ

)

ε

≤ a− θi
2− θ − θr

(1− θ)θr
ε+

(

1− θi

1− θ

)

ε

= a−
2− θ − θr−i

(1− θ)θr−i
ε
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= a−
(1 − θ)θr−i + (2− θ)(1 − θr−i)

(1− θ)θr−i
ε

≤ a− ε, i = 0, 1, . . . , r.

By the definition of {bn}, we have bn0
< a− ε, which contradicts bn0

> a− ε
4 .

Thus {an}∞n=1 converges to a. �

Lemma 3. Let E be a Banach space, K be a nonempty closed convex subset of

E, {Ti}mi=1 be a finite family of asymptotically quasi-nonexpansive selfmappings

of K with sequences {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n < +∞. Let {xn} be

the sequence as defined by (2) satisfying {βi
n}

m
i=1 ⊂ [δ, 1 − δ] with δ ∈ (0, 1).

Then limn→∞ ‖xn − x∗‖ and limn→∞ ‖yin − x∗‖ are existent and equal for all

x∗ ∈ F and i = 1, 2, . . . ,m− 1.

Proof. Let x∗ ∈ F =
⋂m

i=1 F (Ti) 6= ∅, vn = max1≤i≤m ui
n for each n. Since

∑∞

n=1 u
i
n < +∞ for each i, therefore

∑∞

n=1 vn < +∞. Put

β(i)
n =

{

β1
nβ

2
n · · ·β

m
n , i = 0;

β1
nβ

2
n · · · (1− βi

n), i = 1, 2, . . . ,m.

It follows from (2), we obtain that for any i = 1, 2, . . . ,m− 2

‖yin − x∗‖ = ‖(1− βi+1
n )xn−qi+1

+ βi+1
n T n

i+1y
i+1
n − x∗‖

≤ (1− βi+1
n )‖xn−qi+1

− x∗‖+ βi+1
n (1 + ui+1

n )‖yi+1
n − x∗‖

≤ (1 + vn)
(

(1− βi+1
n )‖xn−qi+1

− x∗‖+ βi+1
n ‖yi+1

n − x∗‖
)

,(9)

and for i = m− 1, we have

‖ym−1
n − x∗‖ = ‖(1− βm

n )xn−qm + βm
n T n

mxn − x∗‖

≤ (1− βm
n )‖xn−qm − x∗‖+ βm

n (1 + um
n )‖xn − x∗‖

≤ (1 + vn) ((1− βm
n )‖xn−qm − x∗‖+ βm

n ‖xn − x∗‖) .(10)

Then, from (2), (9) and (10), we get

‖xn+1 − x∗‖ ≤ (1− β1
n)‖xn−q1 − x∗‖+ β1

n‖T
n
1 y

1
n − x∗‖

≤ (1 + vn)
(

(1 − β1
n)‖xn−q1 − x∗‖+ β1

n‖y
1
n − x∗‖

)

≤ (1 + vn)
2
(

(1− β1
n)‖xn−q1−x∗‖+β1

n(1 − β2
n)‖xn−q2−x∗‖

+β1
nβ

2
n‖y

2
n − x∗‖

)

...

≤ (1 + vn)
m−1

(m−1
∑

i=1

β(i)
n ‖xn−qi − x∗‖

+ β1
nβ

2
n · · ·β

m−1
n ‖ym−1

n − x∗‖

)

(11)
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≤ (1 + vn)
m

(

β(0)
n ‖xn − x∗‖+

m
∑

i=1

β(i)
n ‖xn−qi − x∗‖

)

= l(0)n ‖xn − x∗‖+
m
∑

i=1

l(i)n ‖xn−qi − x∗‖,

where l
(i)
n = (1 + vn)

mβ
(i)
n . By the definition of {β

(i)
n }, we obtain l

(0)
n = (1 +

vn)
mβ

(0)
n ≥ δm for some δ ∈ (0, 1), then we have lim infn→∞ l

(0)
n > 0. Let

{cn}∞n=1 be a sequence defined by

cn =















0,
m
∑

i=0

l
(i)
n ≤ 1;

m
∑

i=0

l
(i)
n − 1,

m
∑

i=0

l
(i)
n > 1.

Since
∑m

i=0 β
(i)
n = 1 and

∑∞

n=1 vn < +∞, then

∞
∑

n=1

cn =

∞
∑

n=1

(

m
∑

i=0

l(i)n − 1

)

(12)

=

∞
∑

n=1

(

(1 + vn)
m − 1

)

=

∞
∑

n=1

(C1
mvn + C2

mv2n + · · ·+ Cm
mvmn ) < +∞.

It follows from Lemma 2 together with (11) and (12), we obtain

lim
n→∞

‖xn − x∗‖

exists for all x∗ ∈ F . Moreover, limn→∞ ‖xn −x∗‖ exists together with (11), it
is easy to see that limn→∞ ‖yin − x∗‖ also exist for all i = 1, 2, . . . ,m − 1 and
limn→∞ ‖xn − x∗‖ = limn→∞ ‖yin − x∗‖. �

Lemma 4 ([17]). Let p > 1, r > 0 be two fixed numbers and E be a Banach

space. Then E is uniformly convex if and only if there exists a continuous,

strictly increasing, and convex function g : [0,∞) → [0,∞) with g(0) = 0 such

that ‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − ωp(λ)g(‖x − y‖) for all x, y ∈
Br(0) = {x ∈ E : ‖x‖ ≤ r}, and λ ∈ [0, 1], where ωp(λ) = λ(1−λ)p+(1−λ)λp.

Lemma 5 ([14]). Let E be a uniformly convex Banach space, K be a nonempty

closed subset of E, and T : K → K an asymptotically nonexpansive mapping.

Then I − T is semi-closed at zero, i.e., for each sequence {xn} ⊂ K, if {xn}
converges weakly to p ∈ K and {(I − T )xn} converges strongly to 0, then

p ∈ F (T ).

Lemma 6 ([15]). Let E be a Banach space which satisfies Opial’s condition

and let {xn} be a sequence in E. Let u, v ∈ E be such that limn→∞ ‖xn−u‖ and
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limn→∞ ‖xn − v‖ exist. If {xnk
} and {xmk

} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.

3. Main results

In this section, we will prove our main theorems.

Theorem 1. Let E be a Banach space, K be a nonempty closed convex subset

of E, {Ti}mi=1 and {xn} as taken in Lemma 3. Then the sequence {xn}∞n=1 be

given by (2) converges strongly to a common fixed point of {Ti}mi=1 if and only

if lim infn→∞ d(xn, F ) = 0, where d(xn, F ) = infp∈F ‖xn − p‖.

Proof. Necessity is obvious. We only prove the sufficiency. Suppose

lim inf
n→∞

d(xn, F ) = 0.

As proved in Lemma 3, we obtain limn→∞ ‖xn−x∗‖ exists for all x∗ ∈ F . This
further implies that limn→∞ d(xn, F ) exists.

By the fact that lim infn→∞ d(xn, F ) = 0, we obtain limn→∞ d(xn, F ) = 0,
that is

lim
n→∞

d(xn, F ) = lim
n→∞

inf
x∗∈F

‖xn − x∗‖ = 0.

It implies that

inf
x∗∈F

lim
n→∞

‖xn − x∗‖ = 0.

So for any given ε > 0, there exist p ∈ F and N > 0 such that

‖xn − p‖ <
ε

2

for all n > N . This shows that

‖xn+m − xn‖ ≤ ‖xn+m − p‖+ ‖xn − p‖ <
ε

2
+

ε

2
= ε

for all n > N and m ≥ 0. Hence {xn} is a Cauchy sequence. Since E is a
complete, we can obtain {xn} is convergent. Let limn→∞ xn = x′. There exists
N ′ > 0 such that

‖xn − x′‖ <
ε

2

for all n > N ′. Let N∗ = max{N,N ′}. For all n ≥ N∗, we have

‖Tix
′ − x′‖ ≤ ‖Tix

′ − Tip‖+ ‖p− x′‖

≤ (1 + v1)‖p− x′‖+ ‖p− x′‖

≤ (2 + v1)(‖xn − p‖+ ‖x′ − xn‖)

≤ (2 + v1)ε

for any i = 1, 2, . . . ,m. By the arbitrariness of ε, it gets ‖Tix
′−x′‖ = 0 for any

i = 1, 2, . . . ,m. So the sequence {an}∞n=1 converges strongly to x′ ∈ F . �



90 JUAN XIAO, LEI DENG, AND MING-GE YANG

Theorem 2. Let E be a uniformly convex Banach space, K be a nonempty

closed convex subset of E, {Ti}mi=1 be a family of asymptotically quasi-nonexpan-

sive self-mappings of K with sequences {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n <

+∞. If the iteration sequence {xn} is defined by (2) satisfying {βi
n}

m
i=1 ⊂

[δ, 1− δ] with δ ∈ (0, 1), then limn→∞ ‖xn − Tixn‖ = 0.

Proof. Let x∗ be a common fixed point of {Ti}mi=1, vn = max1≤i≤m ui
n for each

n. Since
∑∞

n=1 u
i
n < +∞ for each i, therefore

∑∞

n=1 vn < +∞. Since E is
uniformly convex Banach space, from Lemma 4, let p = 2, we get

‖xn+1 − x∗‖2 = ‖(1− β1
n)xn−q1 + β1

nT
n
1 y

1
n − x∗‖2

= ‖(1− β1
n)(xn−q1 − x∗) + β1

n(T
n
1 y

1
n − x∗)‖2

≤ (1− β1
n)‖xn−q1 − x∗‖2 + β1

n‖T
n
1 y

1
n − x∗‖2

−
(

β1
n(1 − β1

n)
2 + (1− β1

n)β
1
n

2
)

g
(

‖T n
1 y

1
n − xn−q1‖

)

≤ (1− β1
n)‖xn−q1 − x∗‖2 + β1

n(1 + vn)‖y
1
n − x∗‖2

− 2δ3g
(

‖T n
1 y

1
n − xn−q1‖

)

,(13)

and

‖yin − x∗‖2 = ‖(1− βi+1
n )xn−qi+1

+ βi+1
n T n

i+1y
i+1
n − x∗‖2

≤ (1 − βi+1
n )‖xn−qi+1

− x∗‖2 + βi+1
n ‖T n

i+1y
i+1
n − x∗‖2

− ω2(β
i+1
n )g

(

‖T n
i+1y

i+1
n − xn−qi+1

‖
)

≤ (1 − βi+1
n )‖xn−qi+1

− x∗‖2 + βi+1
n (1 + vn)‖y

i+1
n − x∗‖2

− ω2(β
i+1
n )g

(

‖T n
i+1y

i+1
n − xn−qi+1

‖
)

≤ (1 − βi+1
n )‖xn−qi+1

− x∗‖2 + βi+1
n (1 + vn)‖y

i+1
n − x∗‖2

− 2δ3g
(

‖T n
i+1y

i+1
n − xn−qi+1

‖
)

(14)

for any i = 1, 2, . . . ,m− 2 and

‖ym−1
n − x∗‖2 = ‖(1− βm

n )xn−qm + βm
n T n

mxn − x∗‖2

≤ (1 − βm
n )‖xn−qm − x∗‖2 + βm

n (1 + vn)‖xn − x∗‖2

− ω2(β
m
n )g (‖T n

mxn − xn−qm‖)

≤ (1 − βm
n )‖xn−qm − x∗‖2 + βm

n (1 + vn)‖xn − x∗‖2

− 2δ3g (‖T n
mxn − xn−qm‖) .(15)

By (13), we have

2δ3g
(

‖T n
1 y

1
n − xn−q1‖

)

≤ (1− β1
n)(‖xn−q1 − x∗‖2 − ‖xn+1 − x∗‖2)

+ β1
n

(

(1 + vn)‖y
1
n − x∗‖2 − ‖xn+1 − x∗‖2

)

.(16)
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Using Lemma 3, we have limn→∞ ‖xn−x∗‖ and limn→∞ ‖yin−x∗‖ are existent
and equal. Hence, by (16) and limn→∞ vn = 0, we obtain

g
(

‖T n
1 y

1
n − xn−q1‖

)

→ 0 (as n → ∞).

But g is strictly increasing, continuous and g(0) = 0. Therefore

‖T n
1 y

1
n − xn−q1‖ → 0 (as n → ∞).(17)

Further, similar to the computations above, using (14) and (15), we also can
get for any i = 1, 2, . . . ,m− 2

‖T n
i+1y

i+1
n − xn−qi+1

‖ → 0 (as n → ∞),(18)

and

‖T n
mxn − xn−qm‖ → 0 (as n → ∞).(19)

It follows from (2) and (17) that

‖xn+1 − xn−q1‖ = β1
n‖T

n
1 y

1
n − xn−q1‖ → 0 (as n → ∞).(20)

This implies that

‖xn+1 − xn‖ = 0, ‖xn − xn−qi‖ → 0 (as n → ∞), i = 1, 2, . . . ,m.(21)

Notice that from (2), (17), (18) and (21), for any i = 1, 2, . . . ,m−2, we have

‖xn − yin‖ = ‖xn −
(

(1− βi+1
n )xn−qi+1

+ βi+1
n T n

i+1y
i+1
n

)

‖

≤ ‖xn − xn−qi+1
‖+ βi+1

n ‖xn−qi+1
− T n

i+1y
i+1
n ‖ → 0 (as n → ∞),(22)

and it follows from (2), (19) and (21) that for i = m− 1

‖xn − ym−1
n ‖ = ‖xn − ((1− βm

n )xn−qm + βm
n T n

mxn) ‖

≤ ‖xn − xn−qm‖+ βm
n ‖xn−qm − T n

mxn‖ → 0 (as n → ∞).(23)

It follows from (17), (18), (21) and (22), for i = 1, 2, . . . ,m− 1

‖T n
i xn − xn‖ ≤ ‖T n

i xn − T n
i y

i
n‖+ ‖T n

i y
i
n − xn−qi‖+ ‖xn−qi − xn‖

≤ (1 + vn)‖xn − yin‖+ ‖T n
i y

i
n − xn−qi‖+ ‖xn−qi − xn‖

→ 0 (as n → ∞)(24)

and it follows from (19), (21) and (23)

‖T n
mxn − xn‖ ≤ ‖T n

mxn − xn−qm‖+ ‖xn−qm − xn‖ → 0 (as n → ∞).(25)

From (21), (24) and (25), for any i = 1, 2, . . . ,m, we have

‖xn − Tixn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖+ ‖T n+1

i xn+1 − T n+1
i xn‖

+ ‖T n+1
i xn − Tixn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖+ (1 + vn)‖xn+1 − xn‖

+ (1 + v1)‖T
n
i xn − xn‖

= (2 + vn)‖xn − xn+1‖+ ‖xn+1 − T n+1
i xn+1‖



92 JUAN XIAO, LEI DENG, AND MING-GE YANG

+ (1 + v1)‖T
n
i xn − xn‖ → 0 (as n → ∞).

�

Theorem 3. Let E be a uniformly convex Banach space satisfying Opial’s

condition, K be a nonempty closed convex subset of E, {Ti}mi=1 be a fam-

ily of asymptotically quasi-nonexpansive self-mappings of K with sequences

(respectively) {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n < +∞. If the iteration

sequence {xn} is defined by (2) satisfying {βi
n}

m
i=1 ⊂ [δ, 1− δ] with δ ∈ (0, 1),

then {xn} converges weakly to a common fixed point of {Ti}mi=1 in K.

Proof. By using the same proof as in Theorem 2, it can be shown that for any
i = 1, 2, . . . ,m

lim
n→∞

‖xn − Tixn‖ = 0.

So I − Ti is semi-closed at 0.
Since E is uniformly convex and {xn} is bounded, we may assume that

xn ⇀ u as n → ∞, without loss of generality. By Lemma 5, we have u ∈ F .
Suppose that subsequences {xnk

} and {xmk
} of {xn} converge weakly to u and

v, respectively. From Lemma 5, u, v ∈ F . By Lemma 3, limn→∞ ‖xn − u‖ and
limn→∞ ‖xn − v‖ exist. It follows from Lemma 6 that u = v. Therefore {xn}
converges weakly to a common fixed point of {Ti}mi=1. �

Theorem 4. Let E be a uniformly convex Banach space, K be a nonempty

closed convex subset of E, {Ti}mi=1 be a family of asymptotically quasi-nonexpan-

sive self-mappings of K with sequences {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n <

+∞. If the iteration sequence {xn} is defined by (2) satisfying {βi
n}

m
i=1 ⊂

[δ, 1 − δ] with δ ∈ (0, 1), and {Ti}mi=1 satisfies condition (B) with respect to

the sequence {xn}, then {xn} converges strongly to a common fixed point of

{Ti}mi=1 in K.

Proof. It follows from Theorem 2 that for any i = 1, 2, . . . ,m

lim
n→∞

‖xn − Tixn‖ = 0.

Since {Ti}mi=1 satisfies condition (B) with respect to the sequence {xn}, then
there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) >
0 for all r ∈ (0,∞), such that for all xn ∈ K

f(d(xn, F )) ≤ max
0≤i≤m

‖xn − Tixn‖.

So limn→∞ f(d(xn, F )) = 0, that is limn→∞ d(xn, F ) = 0. By Theorem 1, we
obtain {xn} converges strongly to some p ∈ F . �

Corollary 5. Let E be a uniformly convex Banach space, K is a nonempty

closed convex subset of E, {Ti}mi=1 be a family of asymptotically quasi-nonexpan-

sive self-mappings of K with sequences {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n <
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+∞. If the iteration sequence {xn} is defined as follows:






















xj ∈ E (j = 1, 2, . . . , r),

xn+1 = (1 − β1
n)xn−1 + β1

nT
n
1 y

1
n,

yin = (1 − βi+1
n )xn−(i+1) + βi+1

n T n
i+1y

i+1
n , i = 1, 2, . . . ,m− 2,

ym−1
n = (1 − βm

n )xn−m + βm
n T n

mxn, 2 ≤ m ≤ r ≤ n,

where {βi
n}

m
i=1 ⊂ [δ, 1− δ] with δ ∈ (0, 1).

(1) If E satisfying Opial’s condition, then {xn} converges weakly to a com-

mon fixed point of {Ti}mi=1 in K.

(2) If T satisfies condition (B) with respect to the sequence {xn}, then {xn}
converges strongly to a common fixed point of T .

Proof. By taking {qi}
m
i=1 = i for all n ≥ 1 in (2), from Theorem 3 and Theorem

4, the conclusion of the corollary follows. �

Corollary 6. Let E be a uniformly convex Banach space, K is a nonempty

closed convex subset of E, {Ti}mi=1 be a family of asymptotically quasi-nonexpan-

sive self-mappings of K with sequences {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n <

+∞. If the iteration sequence {xn} is defined as follows:


















































x1 ∈ E,

xn+1 = (1− β1
n)xn + β1

nT
n
1 y

1
n,

y1n = (1− β2
n)xn−1 + β2

nT
n
2 y

2
n,

...

ym−2
n = (1− βm−1

n )xn−(m−2) + βm−1
n T n

m−1y
m−1
n ,

ym−1
n = (1− βm

n )xn−(m−1) + βm
n T n

mxn, m ≥ 1,

where {βi
n}

m
i=1 ⊂ [δ, 1− δ] with δ ∈ (0, 1).

(1) If E satisfying Opial’s condition, then {xn} converges weakly to a com-

mon fixed point of {Ti}mi=1 in K.

(2) If T satisfies condition (B) with respect to the sequence {xn}, then {xn}
converges strongly to a common fixed point of T .

Proof. By taking r = 1, q1 = 0 and {qi}mi=2 = i − 1 for all n ≥ 1 in (2),
from Theorem 3 and Theorem 4, the conclusion of the corollary follows. This
completes the proof. �

Corollary 7. Let E be a uniformly convex Banach space, K is a nonempty

closed convex subset of E, {Ti}mi=1 be a family of nonexpansive self-mappings

of K with sequences {ui
n}

m
i=1 ⊂ [0,∞) such that

∑∞

n=1 u
i
n < +∞ and F =

⋂m

i=1 F (Ti) 6= ∅. If the iteration sequence {xn} is defined by (1) satisfying

{βi
n}

m
i=1 ⊂ [δ, 1− δ] with δ ∈ (0, 1).

(1) If E satisfying Opial’s condition, then {xn} converges weakly to a com-

mon fixed point of {Ti}mi=1 in K.
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(2) If T satisfies condition (B) with respect to the sequence {xn}, then {xn}
converges strongly to a common fixed point of T .

Proof. By taking r = 1, {T n
i }

m
i=1 = T and {qi}mi=1 = 0 for all n ≥ 1 in (2), we

get (1), which is Rhoades and Soltuz introduced in [13]. From Theorem 3 and
Theorem 4, the conclusion of the corollary follows. �
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