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Abstract. In this paper, we establish strong and ∆-convergence theorems for new iteration

process namely S-R iteration process for a generalized α-nonexpansive mappings in a uni-

formly convex hyperbolic space and also we show that our iteration process is faster than

other iteration processes appear in the current literature’s. Our results extend the corre-

sponding results of Ullah et al. [5], Imdad et al. [16] in the setting of uniformly convex

hyperbolic spaces and many more in this direction.

1. Introduction

In this paper, N denotes the set of all positive integers, while Ω(T ) denotes
the set of all fixed point of T. Let C be a nonempty subset of normed space
X and mapping T : C → C is said to be

0Received January 15, 2023. Revised May 18, 2023. Accepted June 2, 2023.
02020 Mathematics Subject Classification: 47H09, 47H10.
0Keywords: Generalized α-nonexpansive mappings, strong and ∆-convergence uniformly,

S-R iteration process.
0Corresponding author: J. K. Kim(jongkyuk@kyungnam.ac.kr).



2 J. K. Kim, Samir Dashputre, Padmavati and Rashmi Verma

(1) nonexpansive, if
‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C,

(2) quasi nonexpansive, if
‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C and p ∈ Ω(T ).

On the other hand, an existence of a solution for an operator equation is
established then in many cases, such solution cannot be obtained by using ordi-
nary analytical methods. To overcome such cases, one needs the approximate
value of this solution. To do this, we first rearrange the operator equation in
the form of fixed point equation Tx = x, where T, the fixed point mapping,
may be nonlinear. A solution x∗ of the problem Tx = x, is called a fixed point
of the mapping T. Now we apply the most appropriate iterative algorithm on
the fixed point equation, and the limit of the sequence generated by this most
appropriate algorithm is in fact the value of the desired fixed point for the
fixed point equation and the solution for the operator equation.

In 1920 [11], Banach was proved a remarkable know as Banach Fixed Point
Theorem it states that every contraction mapping in a complete metric space
has a unique fixed point, generated by the sequence wn+1 = Twn (Picard
iterates).

Since for the class of nonexpansive mappings, Picard iterates do not always
converge to a fixed point of a certain nonexpansive mapping, we, therefore use
some other iterative processes involving different steps and set of parameters.
Among the other things, Mann [25], Ishikawa [17], Noor [26], S iteration of
Agarwal et al. ([3], [4]), SP iteration of Phuengrattana and Suantai [28], S
iteration of Karahan and Ozdemir [19], Normal-S [30], Picard-Mann hybrid
[21], Krasnoselskii-Mann [2], Abbas et al. [1], Thakur et al. [33] and Picard-
S [18] are the most studied iterative processes. In 2018, Ullah and Arshad
introduced M iteration process [34] for Suzuki mappings and proved that it
converges faster than all of these iteration processes.

Recently, Ali and Ali [8] introduced the novel iteration process, namely, F
iterative scheme for generalized contractions as follows:

w1 ∈ C,
un = T ((1− αn)wn + αnTwn),

vn = Tun,

wn+1 = Tvn, n ≥ 1.

(1.1)

In this paper, we establish strong and ∆-convergence theorems for S-R itera-
tion process generated by generalized α-nonexpansive mappings in a uniformly
convex Banach space and also show the numerical efficiency of our established
results, we provide a new example of generalized α-nonexpansive mappings
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and we prove that our iteration process is more efficient than many other it-
erative schemes. Our results extend the corresponding results appear in the
current literature’s in the setting of uniformly convex hyperbolic spaces.

2. Preliminaries

Let (X, d) be a metric space and C be a nonempty subset of X. In
2008, Suzuki [31] introduce a class of single valued mappings called Suzuki-
generalized nonexpansive mappings (or condition (C)) satisfying a condition:

1

2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

It is obvious that, every mapping satisfying in condition (C) with a fixed point
is quasi-nonexpansive mapping in fact the converse is not true (see Example
2.1. and 2.2., [16], [31]).

In 2011, Aoyama and Kohsaka [9] introduced the class of α-nonexpansive
mappings in Banach spaces and obtained fixed point theorems for such map-
pings ([7], [22]). Ariza-Puiz et al. in [10] showed that the concept of α-
nonexpansive is trivial for α < 0. It is obvious that every nonexpansive map-
ping is α-nonexpansive and also every α-nonexpansive mapping with a fixed
point is quasi-nonexpansive. In general condition (C) and α−nonexpansive
mapping are not continuous mappings (see [16] and [31]).

In 2017, Pant and Shukla [27] proved that the notion of of generalized α-
nonexpansive maps is weaker than the notion of maps endowed with condition
(C).

Let C be a nonempty subset of X. A mapping T : C → C is said to be
generalized α-nonexpansive, if there exists and α ∈ [0, 1) such that for all
x, y ∈ C,
1

2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ αd(x, Ty) +αd(Ty, x) + (1− 2α)d(x, y).

(2.1)

The following results for generalized α-nonexpansive mappings can be found
in [27].

Proposition 2.1. ([27]) Let (X, d) be a metric space and C be a nonempty
closed subset of X. Let T : C → C be a generalized α-nonexpansive for
α ∈ [0, 1) the following hold:

(i) Every mapping satisfying condition (C) is a generalized α-nonexpansive
mapping, but the converse is not true.

(ii) F (T ) is closed. Moreover, if C is strictly convex and C is convex, then
F (T ) is convex.
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(iii) If T is generalized nonexpansive then for every choice of x, y ∈ C,

d(y, Tx) ≤
(

3 + α

1− α

)
d(y, Ty) + d(x, y).

Throughout, in this paper we work in the setting of hyperbolic spaces in-
troduced by Kohlenbach [23].

A hyperbolic space (X, d,W ) is a metric space (X, d) together with a con-
vexity mapping W : X2 × [0, 1]→ X satisfying

(W1) d(u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y);
(W2) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y);
(W3) W (x, y, α) = W (y, x, 1− α);
(W4) d(W (x, z, α),W (y, w, 1− α)) ≤ (1− α)d(x, y) + αd(z, w),

for x, y, w and z in X and α, β ∈ [0, 1].

A metric space is said to be a convex metric space in the sense of Takahashi
[32], if a triple (X, d,W ) satisfy only W1. The concept of hyperbolic spaces
in [23] is more restrictive than the hyperbolic type introduced by Goebel and
Kirk [13] since W1 and W2 together are equivalent to (X, d,W ) being a space
of hyperbolic type in [13]. But it is slightly more general than the hyperbolic
space defined in Reich and Shafrir [29] (see [15]). This class of metric spaces
in [23] covers all normed linear spaces, R-trees in the sense of Tits, the Hilbert
ball with the hyperbolic metric (see [6]), Cartesian products of Hilbert balls,
Hadamard manifolds (see [29]), and CAT (0) spaces in the sense of Gromov
[12]. A thorough discussion of hyperbolic spaces and a detailed treatment of
examples can be found in [23] (see also [13, 14, 29]).

If x, y ∈ X and λ ∈ [0, 1], then we use the notation (1 − λ)x
⊕
λy for

W (x, y, λ). The following holds even for the more general setting of convex
metric space [32]: for all x, y ∈ X and λ ∈ [0, 1],

d(x, (1− λ)x⊕ λy) = λd(x, y) and d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y).

As consequence, we have

1 x⊕ 0 y = x, 0x⊕ 1 y = y

and

(1− λ)x⊕ λx = λx⊕ (1− λ)x = x.

A hyperbolic space (X, d,W ) is a uniformly convex [24], if for any r > 0
and ε ∈ (0, 2], there exists δ ∈ (0, 1] such that for all a, x, y ∈ X,

d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r,

provided d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr.
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A mapping η : (0,∞) × (0, 2] → (0, 1], which providing such a δ = η(r, ε)
for given r > 0 and ε ∈ (0, 2], is called as a modulus of uniform convexity.
We call the function η is monotone if it decreases with r (for fixed ε), that is
η(r2, ε) ≤ η(r1, ε) for all r2 ≥ r1 > 0.

In [24], Leustean proved that CAT (0) spaces are uniformly convex hyper-

bolic spaces with modulus of uniform convexity η(r1, ε) = ε2

8 quadratic in ε.
Thus, the class of uniformly convex hyperbolic spaces is a natural generaliza-
tion of both uniformly convex Banach spaces and CAT (0) spaces.

Now, we give the concept of ∆-convergence and some of its basic properties.

Let C be a nonempty subset of metric space (X, d) and {xn} be any bounded
sequence in X while diam(C) denote the diameter of C. Consider a continuous
functional ra(., {xn}) : X → R+ defined

ra(., {xn}) = lim sup
n→∞

d(xn, x), x ∈ X.

The infimum of ra(., {xn}) over C is said to be a asymptotic radius of {xn}
with respect to C and is denoted by ra(C, {xn}). A point z ∈ C is said to be
an asymptotic center of the sequence {xn} with respect to C if

ra(z, {xn}) = inf{ra(x, {xn}) : x ∈ C},
the set of all asymptotic centers of {xn} with respect to C is denoted by
AC(C, {xn}). This set may be empty, a singleton, or certain infinitely many
points. If the asymptotic radius and the asymptotic center are taken with
respect to X, then these are simply denoted by ra(z, {xn}) = ra({xn}) and
AC(X, {xn}) = AC({xn}), respectively. We know that for x ∈ X, ra(x, {xn}) =
0 if and only if lim

n→∞
xn = x. It is known that every bounded sequence has

a unique asymptotic center with respect to each closed convex subset in uni-
formly convex Banach spaces and even CAT (0) spaces.

The following lemma is due to Leustean [24] and ensures that this property
also holds in a complete uniformly convex hyperbolic space.

Lemma 2.2. ([24, Proposition 3.3]) Let (X, d,W ) be a complete uniformly
convex hyperbolic space with monotone modulus of uniform convexity g. Then
every bounded sequence {xn} in X has a unique asymptotic center with respect
to any nonempty closed convex subset C of X.

Recall that, a sequence {xn} in X is said to be ∆-convergent to x ∈ X if x
is the unique asymptotic center of {un} for every subsequence {un} of {xn}.
In this case, we write ∆-lim xn = x and call x the ∆-limit of {xn}.

Lemma 2.3. ([20]) Let (X, d,W ) be a uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Let x ∈ X and {tn} be a sequence



6 J. K. Kim, Samir Dashputre, Padmavati and Rashmi Verma

in [a, b] for some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that

lim sup
n→∞

d(xn, x) ≤ c, lim sup
n→∞

d(yn, x) ≤ c,

lim sup
n→∞

d(W (xn, yn, tn), x) ≤ c,

for some c ≥ 0, then lim
n→∞

d(xn, yn) = 0.

Lemma 2.4. Let (X, d) be a complete uniformly convex hyperbolic space with
monotone modulus of convexity η, C be a nonempty closed convex subset of X
and T : C → C be a generalised α-nonexpansive mapping for some α ∈ [0, 1)
on C. Suppose {xn} is bounded sequence in C such that

lim
n→∞

d(xn, Txn) = 0.

Then T has a fixed point.

Proof. Since {xn} is bounded sequence in X, by Lemma 2.2, has unique as-
ymptotic center in C, that is, AC(C, {xn}) = {xn} is singleton and

lim
n→∞

d(xn, Txn) = 0.

Since T is generalised α-nonexpansive for all x, y ∈ C such that

d(xnTxn) ≤
(

3 + α

1− α

)
d(xn, Txn) + d(xn, x).

Taking lim sup as n→∞ on both side of the above inequality, we get

lim sup
n→∞

d(xnTxn) ≤
(

3 + α

1− α

)
lim sup
n→∞

d(xn, Txn) + lim sup
n→∞

d(xn, x),

using the fact that lim
n→∞

d(xn, Txn) = 0, we have

ra(Tx, {xn}) = lim sup
n→∞

d(xnTxn)

= lim sup
n→∞

d(xn, x)

= ra(x, {xn}).

By using the uniqueness of asymptotic center, we have T has fixed point, that
is Ω(T ) 6= φ. �
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3. Main results

In this section, we deal strong convergence and ∆-convergence theorem for
iterative sequence which is faster than the sequence defined by [5].

Let C be a nonempty subset of a hyperbolic space X, and T : C → C be a
generalized α-nonexpansive mapping. Let {wn} be sequence generated by

xn = W (wn, Twn, αn),

un = W (Txn, 0, 0),

vn = W (Tun, 0, 0),

wn+1 = W (Tvn, 0, 0), n ∈ N,

(3.1)

where {αn} is in [ε, 1 − ε] for all n ∈ N and ε ∈ (0, 1). The (3.1) is know as
S-R iteration process.

Now we define the Fejer monotone sequence and its properties.

Definition 3.1. ([16, Lemma 3.1]) Let C be a nonempty subset of a hyperbolic
space X and {xn} be a sequence in X. Then {xn} is said to be Fejer monotone
with respect to C, if for all x ∈ C and n ∈ N,

d(xn+1, x) ≤ d(xn, x).

Let C be a nonempty subset of X and T be quasi-nonexpansive such that
Ω(T ) 6= ∅, x0 ∈ C. Then the Picard iteration

xn+1 = Txn,

is Fajer monotone with respect to Ω(T ). The following proposition crucial role
in the proof of our result.

Proposition 3.2. ([16, Proposition 3.1]) Let {wn} be a sequence in ∅ 6= C ⊂
X. Suppose that {wn} is Fejer monotone with respect to C. Then we have the
followings:

(1) {wn} is bounded.
(2) The sequence {wn} is decreasing and converges to p ∈ Ω(T ).

Lemma 3.3. Let C be a nonempty closed convex subset of a uniformly convex
hyperbolic space and T : C → C be a mapping which satisfies generalized α-
nonexpansive mapping. If {wn} is a sequence defined by (3.1), then {wn} is
Fejer monotone to Ω(T ).
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Proof. We may take any p ∈ Ω(T ), then generalized α-nonexpansive mapping
beging quasi-nonexpansive. Then by (3.1), we have

d(wn+1, p) = d(W (Tvn, 0, 0), p)

≤ d(Tvn, p)

≤ d(vn, p).

(3.2)

Again using (3.1) and (3.2), we have

d(vn, p) = d(W (Tun, 0, 0), p)

≤ d(Tun, p)

≤ d(un, p).

(3.3)

Again using (3.1) and (3.3), we have

d(un, p) = d(W (Txn, 0, 0), p)

≤ d(Txn, p)

≤ d(xn, p).

(3.4)

Using (3.1) and (3.4), we have

d(xn, p) = d(W (wn.Twn, αn), p)

≤ (1− αn)d(wn, p) + αnd(Twn, p)

≤ (1− αn)d(wn, p) + αnd(wn, p)

≤ d(wn, p).

(3.5)

Consequently, from (3.2), (3.3) and (3.4), we have

d(wn+1, p) ≤ d(wn, p) (3.6)

for all p ∈ Ω(T ). Hence {wn} is Fajer monotone with respect to Ω(T ). �

The following theorem gives the necessary and sufficient condition for the
existence of fixed points for any given generalized α-nonexpansive mapping in
a uniformly convex hyperbolic space.

Lemma 3.4. Let C be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space with monotone modulus of uniform convexity
η and T : C → C be a generalized α-nonexpansive mapping. If {wn} is a
sequence generated by (3.1), then Ω(T ) 6= φ if and only if the sequence {wn}
is bounded and lim

n→∞
d(wn, Twn) = 0.

Proof. Suppose that the fixed point set Ω(T ) is nonempty. Then, by Lemma
3.2, {wn} is Fejer monotone with respect to Ω(T )) and hence by Proposition
3.2, we have lim

n→∞
d(wn, p) exists and {wn} is bounded. Suppose that this limit

is equal to some constant k, that is, lim
n→∞

d(wn, p) = k ≥ 0.



Convergence theorems for generalized α-nonexpansive mappings 9

If k = 0, then it is obvious lim
n→∞

d(wn, Twn) = 0. Now let k > 0, since T is

a generalized α-nonexpansive mapping with p ∈ Ω(T ), we have

lim sup
n→∞

d(Twn, p) ≤ lim sup
n→∞

d(wn, p) ≤ k. (3.7)

From (3.1) and (3.7), we have

lim sup
n→∞

d(xn, p) ≤ lim sup
n→∞

(
d(W (wn, Twn, αn), p)

)
≤ lim sup

n→∞
d(wn, p)

= k.

(3.8)

Again from (3.1), we have

lim inf
n→∞

d(wn+1, p) ≤ lim inf
n→∞

d(vn, p)

≤ lim inf
n→∞

d(un, p)

≤ lim inf
n→∞

d(xn, p)

≤ k
≤ lim inf

n→∞
d(xn, p).

(3.9)

Hence, from (3.7) and (3.9), we get

lim
n→∞

d(xn, p) = k. (3.10)

Hence, it follows from Lemma 2.3, we have lim
n→∞

d(wn, Twn) = 0.

Conversely, suppose the sequence {wn} is bounded and

lim
n→∞

d(wn, Twn) = 0.

Hence, it holds all the assumption of Lemma 2.4, so we have Tx = x, that is,
Ω(T ) 6= ∅. �

Theorem 3.5. Suppose X is a uniformly convex hyperbolic space and C is
a nonempty closed convex subset of X with monotone modulus of uniform
convexity η and the mapping T : C → C is the generalized α-nonexpansive
mapping. If the sequence {wn} is defined by (3.1), then the sequence {wn} is
∆-convergent to a fixed point of T.

Proof. From Lemma 3.4, we see that {wn} is a bounded sequence, therefore
{wn} has a ∆-convergent subsequence. Now we prove that every ∆-convergent
subsequence of {wn} has unique ∆-limit F (t). For this, let a and b be ∆-
limits of the subsequences {an} and {bn} of {wn} respectively. By Lemma
2.2, we have AC(C, {an})={a} and AC(C, {bn})={b}. By Lemma 3.4, we
have lim

n→∞
d(an, Tan) = 0.
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We claim that a and b are the fixed points of T and it is unique.
By Lemma 2.4, a and b are the fixed points of T . Now we show that a = b.

If not, then by uniqueness of asymptotic center

lim sup
n→∞

d(wn, a) = lim sup
n→∞

d(an, a)

< lim sup
n→∞

d(an, b)

= lim sup
n→∞

d(wn, b)

= lim sup
n→∞

d(bn, b)

< lim sup
n→∞

d(bn, a)

= lim sup
n→∞

d(wn, a),

which is a contradiction. Hence a = b, the sequence {wn} is ∆-convergent to
a fixed point of T. �

Theorem 3.6. Suppose X is any complete uniformly convex hyperbolic space
and C be a nonempty closed convex subset of X with monotone modulus
of uniform convexity η and the mapping T : C → C is the generalized α-
nonexpansive mapping. If the sequence {wn} is defined by (3.1), converges
strongly to some fixed point of T if and only if

lim inf
n→∞

D(wn,Ω(T )) = 0,

where D(wn,Ω(T )) = inf
w∈Ω(T )

d(wn, w).

Proof. Necessary part is obvious, we have to prove only sufficient part. First
we prove that the fixed point set Ω(T ) is closed, let {wn} be a sequence in
Ω(T ) which converges to some point p ∈ C. As

λd(wn, Twn) = 0

≤ d(wn, p),

since the mapping T : C → C is the generalized α-nonexpansive mapping, we
have

d(wn, Tp) = d(Twn, Tp)

≤ d(xn, p).

By taking the limit of both sides we obtain

lim
n→∞

d(wn, Tp) ≤ lim
n→∞

d(xn, p)

= 0.
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In view of the uniqueness of the limit, we have p = Tp, so that Ω(T ) is closed.
Suppose

lim inf
n→∞

D(wn,Ω(T )) = 0.

Then, from (3.5)

D(wn+1,Ω(T )) ≤ D(wn,Ω(T )),

it follows from the Lemma 3.3 and Proposition 3.2 that

lim
n→∞

d(wn,Ω(T ))

exists. Hence we know that

lim
n→∞

D(wn,Ω(T )) = 0.

Consider a subsequence {wnk
} of {wn} such that

d(wnk
, pk) <

1

2k
,

for all k ≥ 1, where pk is in Ω(T ). By Lemma 3.3, we have

d(wnk+1
, pk) ≤ d(wnk

, pk)

<
1

2k
,

which implies that

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xnk+1

, pk)

<
1

2k+1
+

1

2k

<
1

2k−1
.

This shows that {pk} is a Cauchy sequence. Since Ω(T ) is closed, {pk} is a
convergent sequence.

Let lim
k→∞

pk = p. Then we know that {wn} converges to p. In fact, since

d(wnk
, p) ≤ d(wnk

, pk) + d(pk, p)

→ 0 as k →∞,
we have

lim
k→∞

d(wnk
, p) = 0.

Since lim
n→∞

d(wn, p) exists, the sequence {wn} is convergent to p. �
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4. Comparison table and Graph

Figure 1. Comparison Table between SR iteration and F iteration.

Figure 2. Graph.
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