J. Appl. Math. & Informatics Vol. 26(2008), No. 1 - 2, pp. 325 - 336
Website: http://www.kcam.biz

WEAK AND STRONG CONVERGENCE OF THREE-STEP
ITERATIONS WITH ERRORS FOR TWO ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS
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ABSTRACT. In this paper, we prove the weak and strong convergence of
the three-step iterative scheme with errors to a common fixed point for
two asymptotically nonexpansive mappings in a uniformly convex Banach
space under a condition weaker than compactness. QOur theorems improve
and generalize some previous results.
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1. Introduction

Let K be a nonempty subset of a real normed linear space E. Let T be a
self-mapping of K. T is said to be asymptotically nonexpansive with constant
t, if there exists ¢, € [1,+00), lim ¢, =1, such that

n—oo

1Tz - T"y|| < tallz - yll, Vo,y € K.

T is called nonexpansive if |Tz — Ty|| < ||z — y|| for all z,y € K.

From the above definitions, it follows that a nonexpansive mapping must be
asymptotically nonexpansive, but the converse does not hold.

It was proved in {1] that if E is uniformly convex and if K is bounded, closed
and convex, then the asymptotically nonexpansive mapping has a fixed point.
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Takahasi and Tamuro [6] introduced the following iterative schemes known as
Ishikawa iterative schemes for a pair of nonexpansive mappings;
=2 €K,
Yn = bnTzp + (1 — bp)zn, (1.1)
Tnt1 = anSYn + (1 —an)Tn, n2>1,
where an, b, € [0,1].
Khan and Hafiz 3] generalized the scheme (1.1) to the one with errors for a
pair of nonexpansive mappings as follows;
T1=T€ K:
Yn = @ TTn + b, Zn + CoyUn, (1.2)
Tntl = @nSYn + bnTn + CrUn, n>1,

where {an}, {bn}, {cn}, {a}, {b.}, {c } are sequences in [0,1] with 0 < 6 <
nyay, <1=6< 1, an+bo+cn=1=a,+b,+c, and {u,}, {v.} are bounded
sequences in K.

We further generalize this scheme (1.2) for a pair of asymptotically nonex-
pansive mappings as follows;

1=z € K,
Zn = 0nS"Tn + (1 = @n — Yn)Tn + Ynln,
Yn = bnTnZn + chnxn -+ (1 — b’n —Cp — ,U;n):rn + HnUn, (13)

Tnt1 = nS™Yn + BnS 20+ (1 —n — Bn — An)Zn + Aqwn, n 21,

where {an}, {bn}, {cn}, {@n}, {Bn}, {M}, {kn}, {Mn} are sequences in [0,1]
and {un}, {vn}, {wn} are bounded sequences in K.

In this paper, we study the three-step iterative scheme with errors (1.3) for the
weak and strong convergence for a pair of asymptotically nonexpansive mappings
in a uniformly convex Banach space. Our theorems improve and generalize some
previous results.

2. Preliminaries

Let E be a Banach space and let K be a nonempty subset of E. Let T be
a mapping of K into itself. For every € with 0 < € < 2, we define the modulus
d(€) of convexity of E by

o) =inf {1~ 2y <1,y < 1,40 w1 2.

A Banach space E is said to be uniformly convex if é(¢) > 0. A uniformly
convex Banach space is reflexive and strictly convex.
A Banach space E is said to satisfy Opial’s condition ({5]) if z, — = and
z #y imply
liminf |z, — z|| < liminf ||z, —y|.
n-—oo n—oe
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Next we state the following useful lemmas.

Lemma 2.1 [7, Lemma 1]. Let {a,}, {ba} and {6n} be three nonnegative se-
quences satisfying

nt1 S (1+0n)an+b, forall n>1.

o oo
If Z 6n < 00 and Z b, < 00, then nll'rgo G, €Tists.

n=1 n=l1

Lemma 2.2 (2, Lemma 4]. Let E be a uniformly convez Banach space satisfying
Opial’s condition, $ # K C E closed and conver, and T : K — K asymptotically
nonexpansive. Then I — T is demiclosed with respect to zero.

Lemma 2.3 [4, Lemma 1.4]. Let E be a uniformly convex Banach space and
B, = {z € E|||z|| <r}, r > 0. Then there exists a continuous, strictly increasing
and convex function g : [0,00) — [0,00), g(0) = 0, such that

laz + by + cz + dw|?® < allzl|® + bllyl|* + cllz|* + dllw]® — abg(llz - yll)
for all z,y,2,w € B, and all a,b,c,d € [0,1] witha+b+c+d=1.

3. Main results

In this section, we prove our main theorems. Let K be a nonempty bounded
convex subset of a real uniformly convex Banach space E. Let 5T : K — K be
asymptotically nonexpansive mappings.

The following iteration scheme is studied:

=z €K,
n = anSnx‘n. + (1 —Qn — ‘Yﬂ)mn + 777'“"’
Yn = bnT"2zn + caT"Zpn + (1 = b — Cn = fin)Tn + fin¥n, (3.1)

Tni41 = OtnS"yn + ﬁnsnzn + (1 - Qp ,Bn - An.):l:n + /\n'wvn n=>1,

where {an}, {bn}, {cn}, {an}, {Bn}, {1}, {un}, {An} are sequences in {0,1]
and {un}, {vn}, {wn} are bounded sequences in K.

Lemma 3.1. If {an}, {bn}, {cn} and {un} are sequences in {0,1] such that
limsup(bp + cn + pn) < 1 and {sn}, {tn} are sequences of real numbers with

n—oo

Snytn =1 for alln > 1 and hm 8 = lxm t, = 1, then there exists a positive
n—
integer N, and v € (0,1) such that ancnsntn <« for alln > Nj.

Proof. By limsup(b, + ¢n + n) < 1, there exists a positive integer Ny and
n—oo

n € (0,1) such that
0nCn S Cpn Sbntcntpn <, Vn2>ng.
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Let ' € (0,1) with 7 > 5. From lim s, = lim t, = 1, there exists a positive
n—oo n—oo
integer N7 > Ny such that

1
Sntn—].(W'—l, anNl,
from which we have spt, < ;,17, Vn> Ni. Put y= ;,’7,- Then we have
AnCnSnly < 7';,7 =79

for all n > Nj. 0

Lemma 3.2. Let E be a uniformly convex Banach space and K its nonempty
bounded convex subset. Let S,T : K — K be asymptotically nonezpansive map-
o0

pings with constants $n,t., respectively and s,,t, > 1, Z(sn - 1) < oo,

n=1
oo

> (tn—1) < co. Let {an}, {Ba}, {an}, {ba}, {ca}, {7}, {1n} and {Aa}

n=1

be real sequences in [0, 1] such that an + Yn, bn+Cn+ itn and an + By + An are in
o0 o0 oo

[0,1] for alln > 1, and Z'yn < 00, Zun < 00, Zz\n < 00. Let {un}, {vn}

n=1 n=1 n=1
and {wn} be the bounded sequence in K. Let {z,} be the sequence as defined in

(3.1). If F(S)NF(T) # ¢, then nli_'ngO ltn —z*| exists for all z* € F(S)NF(T).

Proof. Let z* € F(S)N F(T). Choose a number r > 0 such that K C B, and
K — K C B;. By Lemma 2.3, there exists a continuous, strictly increasing and
convex function g : [0,00) — [0, 00), g(0) = 0 such that

laz + by + cz + dw|® < allzl| + bliyl® + cliz|® + dljw|]* ~ abg(jjz ~ yll)( )
3.2

for all z,y,z,w € B, and all a,b,c,d € [0,1] with a + b+ c+d = 1. It follows
from (3.2) that

20 — |2

= an(8"n = 2°) + (1~ tn — )(&n — %) + Y (ttn — 22

< an||S"zn =22 + (1 = an = Y)l|Zn — 2|2 + Yl — 2" |2
= an(l = an — 1)g(|| 5" 2n — zal))

< (@n8h + (1 = a0 — 1))z — "> + Vnllun — z*|1%,

llyn — |12

Sbn(T"2n —27) + (1 — bp — €n — tin)(@n — 2%) + €a(T"Tn — z7)
+ pin(vn — )2
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< bl T 20 — 2|2 + (1 = bn = n — ) |70 — 2* |2 + Cal| T 20 — z*||
+ pinl|vn — 2|2 = ba(l — bn — € — L) g(|T™2n — Za )
= bntiuzn - -'L'*nz + (1= bp = ¢n — pn)||Tn — x*llz + Cnti”xn - x"‘||2

+ tinllvn — 2*[12 = bn(1 = b — €n = pn)g(I T 20 — Zn))
and

|Zns1 — 2|2
= lan(S™yn — ") + (1 — @n — fn — An)(Tn — *) + Bn(S"2n — 2*)
+ An(wn — 2°)|?
< onl|8"yn — 2| + (1 = an = B = M) 2 — 2" + BallS" 20 — z*||?
+ )\n“wn - x*llz ~an(l = an = Bn = An)g(|S"yn ~ Znl)
< ansillyn = 2* |7 + (1 = an = Bn — An)l|2n — 27| + Bas? ||z — 2*|I?
+ Anllwn = 2*? ~ (1l — an ~ Bn ~ An)g (15" — zall)
< fzn = 2% + (0nca82t2 + ans2 (1 — by — Cn — lin) — On — Bn
= Al — 3’*“2 + an:“n""%””n - 37*“2 + (anbnsiti + ﬁnsi)llzn - 35*”2
— a8 (L = bn — € = p)g(||IT" 20 = Zn]) + Anllwn — 2"
—an(l~an =B — A)g(15"yn — 2nll)
< lzn = 2|2 + (@ncas2t2 + 082 (1 — by — Cn — fin) — O — B
= An)lln ~ x*”2 + anl‘nsi”vn - x*Hz
+ (anbaspts + ﬂnsi)[(ansi + (1= an = M) |20 — 2*|* + llun — z*||°]
= Gnbn2(1 = b — cn = in)g(IT" 20 = @) + Anlfun - °|
—an(l—an =B — An)g([S"yn — znll)
<z — 22 + [onensh(ta — 1) + an(sh — 1) + anbusa(th ~ 1)
+ nBnsi (82 — 1) + ananbnsitd(s2 — 1) + Bu(s2 — 1))||zn — z*||?
+ anpinsallvn = 2| + (anbasits + Pusn) Yallun — |
— anbnsi(1 = bn — cn — pn)g(IT"2n — Tnl) + Anlwn — a;*||2
= an(l = an = Bn = An)g([|S"yn — za|)
< @ — 2% + (@ncash + anbas2)(t2 — Dljcn — z*|?
+ (an + anPrsE + anombn S22 + Bn)(s2 — 1) |an — 2|12
+ pn i flvn ~ 2|2 + 8% (7 + 1)Yn|un — 272
~ anbsi(1 = bn = cn = pn)g([| 7720 = ) + An[lwn — *|1?
— an(l = an = Bn — M) g([18yn — 2all)- (3.3)
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Since {sn}, {tn} and K are bounded, there exists a constant M > 0 such that
(ancnsh + anbns?)|lzn — =*[2 < M

and
(an + anﬁns?x + ananbnsitﬁ + Bn)l|Tn — w'llz <M
for alln > 1. Put

L =sup {sf,(t?l + Dlun — 2|2 : 0> 1},

A= sup{s?,llv,, -z :in> 1}

and
C= max{M,L,A,r2}.

By (3.3), we have
Iznt1 = 2*|? < llzn — 2*|2 + C{(th = 1) + (5 = 1) + ttn + T + An}.

o0
Since 0 < t2 — 1 < 2t(t — 1) for all £ > 1, the assumptions Z(t" —1) <00 and

o o0 (2] n=1

Z(sn —1) < oo implies that Z(ti - 1) < o0, Z(si —1) < co. It follows

n=1 n=1 n=1

from Lemma 2.1 that lim |z, — z*|| exists. a
n—oo

Lemma 3.3. Let E be a uniformly convex Banach space and K its nonempty
bounded convex subset. Let S,T : K — K be asymptotically nonezpansive map-
e <]

pings with constants s, tn, respectively and s,,t, > 1, Z(sn —1) < oo,

n=1
oo

Z(tn —1) < oo. Let {zn} be the sequence as defined in (3.1), and {ay},

n=1

{Br}, {an}, {br}, {en}, { W}, {1n} and {X\s} be real sequences in [0,1] such
that an + Yn, bn + cn + pn and on + B + Ay are in [0,1] for alln > 1, and
o o0 [~}

Z'yn < 00, Z i, < 00, Z An < 0o. Let {un}, {vn} -and {wn} be the bounded
n=1

n=1 n=1
sequences in K. If F(S)NF(T) # ¢ and
0 < liminf @, < limsup(an + Bn + An) < 1,

n—oo n—00

0 < liminf b, < limsup(b, + ¢n + 1) < 1,
n-—>o0

n—oo
then
lim ||Sz, —z,|| = 0= lim ||Tz, — z,||.
n—oo n—oo
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Proof. Assume that lim ioréf an > 0and 0 < liminf b, < limsup(bn+cp+pn) < 1.
n— n-—00

n—oo

Then there exist a positive integer ng and v,7,7' € (0,1) such that
0<n<by, O0<v<a, and bp+ca+pun<n' <1
for all n > ng. By (3.3), we have

vn(1 = 1)g(IT"2n — znl}) < |lTn — &*|[? = T4 — 2*|?
+C{(E2 - D)+ (2 — 1)+ pin + 1 + An}

(3.4)
for all n > ng, where
z* € F(S)NF(T),
C = max{M,L,A,r?,
L = sup{sl(+ lfun— o' i n 2 1},
A = sup{si|v.—z*|?:n>1}.
It follows from inequality (3.4) that for m > ng
> o170 ~2al) < e { 3" (o ="l - fomss — 2"IP)
n=ng - Vn(l - n/) n=ng
+cY ((t;i—1)+(si—1)+un+%+,\n)}
n=no
1 .2
< m{”mno -z
m
+C Y (B =D+ (S =Dttt 7+ M)}

[s ]
Since 0 < 2 —1 < 2t(t — 1) for all t > 1, the assumptions Z(sn -1) < o0,

o [=<] o0 n=l
Z(tn —1) < oo imply that Z(s,g1 - 1) < 00, Z(t?1 —1) < o0. Let m — 00 in
n=1l n=1 n=1

o«
inequality (3.5). Then we get Z g(|T"2n — zx||) < 00 and therefore

n=ng

Jim g(I1T"z —zal) = 0,
Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that

Jim T2 — zo|| = 0. (3.6)
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Since 0 < liminf o, < limsup(an+Bn+As) < 1, then by using a similar method,
n—0eo n—00
together with inequality (3.3), it can be shown that
lim ||S™y, — 2] =0. (3.7)
n-—00
From 2z, = anS™zn + (1 — @n — Yn)Tn + Ynln and Yn = b T 2+ cn T + (1 -
bn — Cn — [in)Tn + lnVn we have
|n — zn]| < aonn = 8"2n|| + nlTn — unl,

9 = Znll < bnllT"2n — Tnfl + cnllT™Tn — Tl + pnllvn — nl|

and
[T zn — znl| < T2 — T zn|| + | T" 20 — nll
Stnl|lzn — znll + [T 20 — 24|
< antpllen — S™zn| + tanl|Tn — unl| + |T" 20 — 20|
Thus

18" %0 — znfl < [|1S™Tn — S™ynll + |S™yn — 24|
< $ullzn = ynll + [15"Yn — zall
L $nbn||T"2n — Tn|| + $ncnl|T"Zn — Zn| + Snbinllvn — Zn|
+ 118" Yn — zall
< $p(bn + e )| T"2n — Tn|| + ancnsntnl|Tn — S"Tn||

+ ensntnYnl|Zn — Un|l + Snpin[vn — Zal + |S"yn — zn|.
(3.8)

By Lemma 3.1, there exist a positive integer N7 and v € (0,1) such that
OnCnSntn, <y for all n > Nj. This together with (3.8) implies that for n > N;

(1 =N 2n — Zall < (1 = antnsntn)||S"2n — znl|
< $n(bn + cn)||[T"2n — Zn|| + CasntnYnllTn — unl|
+ Snpin|[vn — Znll + |S™Yn — Tal|-
It follows from (3.6) and (3.7) that
nli_.ngo |S™zn — zn|| = 0. (3.9)

Moreover, since
1520 = Zull < 1™ 2n = "2l + 11872 — 2]
< snllzn — Zpll + [|1S™Tn — Zn|]
S+ ansn)||S™2n — znll + snYnl|Zn — unll,
it follows from (3.9) that
nli_)r{.lo |1S™zn — zp )l = 0. (3.10)
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Since
Tnt1 — Tn = (S Yn — ZTn) + Ba(S" 20 — Tn) + An(Wn — Zn),
we have
“xnﬂ ~ 8"Tnp1]] S |Tn+1 — Tnll + S Tn41 — S"znl| + [|S"Tn — o
< (1 + sa)||Znt1 = Znll + |87 Tn — 2|
< (1 + sn)anl|S™yn — @nll + (1 + 51)Bn]|S™ 2n — |
+ (14 sp)Anllwn = 2ol + ||S"zn — zal],

IZnt1 = T"Tnt1l| < Znt1 = Zoll + 1T Tns1 — T"2n | + |T"Tn — za|
S 1+ to)znsr = zal + [T72n — 20|
< (L +tn)on|S™yn — Zall + (14 t0)Bnl " 20 — 2|
+ A (14 ta)[|wn — Zn|| + antnllzn — S"z4|
+ tnnllTn — un“ + | T"zn — zn.
These together with (3.6), (3.7), (3.9), (3.10), imply that

|len+1 — S"@ny1]l 0 as n — oo,

lzn41 — T 241l =0 as n— oo,
Thus
[Zns1 = STnt1ll € l@nt1 — S ansall + 1™ Tng1 — SZasa|

< |lent1 = 8" anga | + s1)|En41 — §7Zn4a ),

41 = Toap]| < flonts — Tn+1$n+1H + [|Tn+1-"3n+1 — Tz
<lignt1 = T npa || + tallTnss = T Tl
which imply
Jim 2nss = Szasill =0,
nli_’n;o [€nt1 — TZnya ]| = 0.

O

Theorem 3.1. Let E be a uniformly convex Banach space satisfying Opial’s

condition, and K, S,T,{zn}, {an}, {On},{an}, {bn},{cn}, {m}: {tn} and {Arn}
be as taken in Lemma 8.8. If F(SYNF(T) # ¢, then {z,} converges weakly to
a common fized point of S and T'.

Proof. Let z* € F(S)N F(T). Then, as in Lemma 3.2, lim ||z, — z*|| exists
—00
and {z,} is bounded.
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Now we prove that {z,} has a unique weak subsequential limit in F(S)NF(T).
Let 21 and 22 be two weak limits of the sequences {x,,} and {zn;} of {z.},
respectively. By Lemma 3.3, we have

lim ||z, — Szn,|| = 0.
1—o0

And Lemma 2.2 guarantees that (I — S)z; = 0, i.e, Sz = 2. Similarly,
Tz = z1. Again in the same way, we can prove that 29 € F(S) N F(T).

Next, we prove the uniqueness. Now we are allowed to apply Lemma 3.2,
which provides us with the existence of a = nli.rrolo |zn — 21|l and b= nlLrlgo [ln —
z3||. Assuming that z; # z; and taking into account the fact that z,, — 2; and
Tn; — 23, it follows from Opial’s condition that

a=limsup ||z,, — || < limsup ||z , — z]| = b

1—00 i—00

= limsup ||z,,; — ||
jo0

<limsup ||z,; — 2z1]| =@,
j—roo

which is a contradiction. Hence z; = 25. This completes the proof. 0

Theorem 3.2. Let E be a uniformly convex Banach space and K its non-
empty bounded conver subset. Let S,T : K — K be completely continuous
asymptotically nonezpansive mappings with sn,tn, respectively and sp,t, > 1,
[ <] o0

Z(sn“l) <, Z(tn_l) < o0. Let{an}, {Bn}, {an}, {bn}, {cn}, {1}, {t1n}
n=1 n=1

and {A.} be real sequences in [0, 1] such that ap+n, bn+cn+pin and an+ B+
are in [0,1] for alln > 1, and Z% < 00, Z“" < 00, Z)‘" < 0o. Let {u,},

n=1 n=1 n=1
{vn} and {w,} be the bounded sequences in K. Let {zyn}, {yn} and {z,} be the
sequences defined in (3.1). If F(S)NF(T) # ¢ and

0 < liminf &, < limsup(an + fn + An) < 1,
n—oo

n—oo

0 < liminf b, < limsup(bp + ¢ + un) < 1,

n—oo

then {zn}, {yn} ond {zn} converge strongly to a common fired point of S and
T.

Proof. In the proof of Lemma 3.3, we have

lim ||S"z, — 4[| =0, lm [zp41 — S"Tnp1] =0,
n—oo n—oo

lim |T"zn —zp|| =0, lim [T"z, —z,] =0. (3.11)
n—o0 n—oo
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Thus

l#ns1 = Sznia ] < flznts — 5'"+1$n+1|| + [|Szn+1 = S zn|
S Nengs = S zna | + s1ll@ns = S Tnsa|
—0 as n— oo,
which implies
lim [|Szn —an = 0. (3.12)
Since S is completely continuous and {z,} C K is bounded, there exists a

subsequence {zn, } of {z,} such that {Sz,, } converges. Therefore from (3.12)
{zn,} converges. Let klim Zn, = ¢. By the continuity of S and (3.12), we have
—00

that Sq = ¢. So, ¢ is a fixed point of S. By Lemma 3.2, lim ||z, — ¢| exists.
n—o0o
But klim lzn, — ¢l = 0. Thus
—0

lim {z, —¢|| =0.

n—o
Since
lyn = all < 0nlT"2n — Zull + cnl|T"Tn — Znll + pinl|vn — zn|
—0 as n—x
and
flzn ~ 2all € allS"Zn ~ zall + WnllZa ~ uall
—0 as n— o0,
it follows that lim y, = ¢ and lim 2, =¢. This completes the proof. O
T~=+00 n—oo
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