• 제목/요약/키워드: Uniformly convex

검색결과 118건 처리시간 0.021초

ON THE STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN BANACH SPACES

  • Chang, Shih-Sen;Zhao, Liang Cai;Wu, Ding Ping
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.13-23
    • /
    • 2009
  • Some strong convergence theorems of explicit iteration scheme for asymptotically nonexpansive semi-groups in Banach spaces are established. The results presented in this paper extend and improve some recent results in [T. Suzuki. On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proc. Amer. Math. Soc. 131(2002)2133-2136; H. K. Xu. A strong convergence theorem for contraction semigroups in Banach spaces, Bull. Aust. Math. Soc. 72(2005)371-379; N. Shioji and W. Takahashi. Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica. 1(1999)57-66; T. Shimizu and W. Takahashi. Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83; N. Shioji and W. Takahashi. Strong convergence theorems for asymptotically nonexpansive mappings in Hilbert spaces, Nonlinear Anal. TMA, 34(1998)87-99; H. K. Xu. Approximations to fixed points of contraction semigroups in Hilbert space, Numer. Funct. Anal. Optim. 19(1998), 157-163.]

  • PDF

PROXIMITY MAPS FOR CERTAIN SPACES

  • Lee, Mun-Bae;Park, Sung-Ho
    • 대한수학회보
    • /
    • 제34권2호
    • /
    • pp.259-271
    • /
    • 1997
  • Let K be a nonempty subset of a normed linear space X and let x $\in$ X. An element k$_0$ in K satisfying $\$\mid$$x - k$_0$$\$\mid$$ = d(x, K) := (equation omitted) $\$\mid$$x - k$\$\mid$$ is called a best approximation to x from K. For any x $\in$ X, the set of all best approximations to x from K is denoted by P$_K$(x) = {k $\in$ K : $\$\mid$$ x - k $\$\mid$$ = d(x, K)}. (omitted)

  • PDF

ITERATIVE APPROXIMATION OF FIXED POINTS FOR φ-HEMICONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;An, Zhefu;Li, Yanjuan;Kang, Shin-Min
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.63-74
    • /
    • 2004
  • Suppose that X is a real Banach space, K is a nonempty closed convex subset of X and T : $K\;\rightarrow\;K$ is a uniformly continuous ${\phi}$-hemicontractive operator or a Lipschitz ${\phi}-hemicontractive$ operator. In this paper we prove that under certain conditions the three-step iteration methods with errors converge strongly to the unique fixed point of T. Our results extend the corresponding results of Chang [1], Chang et a1. [2], Chidume [3]-[7], Chidume and Osilike [9], Deng [10], Liu and Kang [13], [14], Osilike [15], [16] and Tan and Xu [17].

COMPOSITE IMPLICIT RANDOM ITERATIONS FOR APPROXIMATING COMMON RANDOM FIXED POINT FOR A FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE RANDOM OPERATORS

  • Banerjee, Shrabani;Choudhury, Binayak S.
    • 대한수학회논문집
    • /
    • 제26권1호
    • /
    • pp.23-35
    • /
    • 2011
  • In the present work we construct a composite implicit random iterative process with errors for a finite family of asymptotically nonexpansive random operators and discuss a necessary and sufficient condition for the convergence of this process in an arbitrary real Banach space. It is also proved that this process converges to the common random fixed point of the finite family of asymptotically nonexpansive random operators in the setting of uniformly convex Banach spaces. The present work also generalizes a recently established result in Banach spaces.

ELLIPTIC BIRKHOFF'S BILLIARDS WITH $C^2$-GENERIC GLOBAL PERTURBATIONS

  • Kim, Gwang-Il
    • 대한수학회보
    • /
    • 제36권1호
    • /
    • pp.147-159
    • /
    • 1999
  • Tabanov investigated the global symmetric perturbation of the integrable billiard mapping in the ellipse [3]. He showed the nonintegrability of the Birkhoff billiard in the perturbed domain by proving that the principal separatrices splitting angle is not zero.In this paper, using the exact separatrix map of an one-degree-of freedom Hamiltoniam system with time periodic perturbation, we show the existence the stochastic layer including the uniformly hyperbolic invariant set which implies the nonintegrability near the separatrices of a Birkhoff's billiard in the domain bounded by $C^2$ convex simple curve constructed by the generic global perturbation of the ellipse.

  • PDF

BOUNDED CONVERGENCE THEOREMS

  • Niemiec, Piotr
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.319-357
    • /
    • 2017
  • There are presented certain results on extending continuous linear operators defined on spaces of E-valued continuous functions (defined on a compact Hausdorff space X) to linear operators defined on spaces of E-valued measurable functions in a way such that uniformly bounded sequences of functions that converge pointwise in the weak (or norm) topology of E are sent to sequences that converge in the weak, norm or weak* topology of the target space. As an application, a new description of uniform closures of convex subsets of C(X, E) is given. Also new and strong results on integral representations of continuous linear operators defined on C(X, E) are presented. A new classes of vector measures are introduced and various bounded convergence theorems for them are proved.

Weak Laws of Large Numbers for Weighted Sums of Fuzzy Random Variables

  • Hyun, Young-Nam;Kim, Yun-Kyong;Kim, Young-Ju;Joo, Sang-Yeol
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.529-540
    • /
    • 2009
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of fuzzy numbers of the real line R. We first give improvements of WLLN for weighted sums of convex-compactly uniformly integrable fuzzy random variables obtained by Joo and Hyun (2005). And then, we consider the case that the averages of expectations of fuzzy random variables converges. As results, WLLN for weighted sums of convexly tight or identically distributed case is obtained.

NEW HYBRID ALGORITHM FOR WEAK RELATIVELY NONEXPANSIVE MAPPING AND INVERSE-STRONGLY MONOTONE MAPPING IN BANACH SPACE

  • Zhang, Xin;Su, Yongfu;Kang, Jinlong
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.87-102
    • /
    • 2011
  • The purpose of this paper is to prove strong convergence theorems for finding a common element of the set of fixed points of a weak relatively nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping by a new hybrid method in a Banach space. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced by Ying Liu[Ying Liu, Strong convergence theorem for relatively nonexpansive mapping and inverse-strongly-monotone mapping in a Banach space, Appl. Math. Mech. -Engl. Ed. 30(7)(2009), 925-932] and some others.

STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY-MONOTONE MAPPINGS IN A BANACH SPACE

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.627-639
    • /
    • 2010
  • In this paper, we introduce a new iterative sequence finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

STRONG AND WEAK CONVERGENCE OF THE ISHIKAWA ITERATION METHOD FOR A CLASS OF NONLINEAR EQUATIONS

  • Osilike, M.O.
    • 대한수학회보
    • /
    • 제37권1호
    • /
    • pp.153-169
    • /
    • 2000
  • Let E be a real q-uniformly smooth Banach space which admits a weakly sequentially continuous duality map, and K a nonempty closed convex subset of E. Let T : K -> K be a mapping such that $F(T)\;=\;{x\;{\in}\;K\;:\;Tx\;=\;x}\;{\neq}\;0$ and (I - T) satisfies the accretive-type condition: $\;{\geq}\;{\lambda}$\mid$$\mid$x-Tx$\mid$$\mid$^2$, for all $x\;{\in}\;K,\;x^*\;{\in}\;F(T)$ and for some ${\lambda}\;>\;0$. The weak and strong convergence of the Ishikawa iteration method to a fixed point of T are investigated. An application of our results to the approximation of a solution of a certain linear operator equation is also given. Our results extend several important known results from the Mann iteration method to the Ishikawa iteration method. In particular, our results resolve in the affirmative an open problem posed by Naimpally and Singh (J. Math. Anal. Appl. 96 (1983), 437-446).

  • PDF