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COMPOSITE IMPLICIT RANDOM ITERATIONS FOR

APPROXIMATING COMMON RANDOM FIXED POINT FOR

A FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE

RANDOM OPERATORS

Shrabani Banerjee and Binayak S. Choudhury

Abstract. In the present work we construct a composite implicit ran-
dom iterative process with errors for a finite family of asymptotically
nonexpansive random operators and discuss a necessary and sufficient
condition for the convergence of this process in an arbitrary real Banach

space. It is also proved that this process converges to the common random
fixed point of the finite family of asymptotically nonexpansive random op-
erators in the setting of uniformly convex Banach spaces. The present
work also generalizes a recently established result in Banach spaces.

1. Introduction

Random fixed point theory was initiated by the Prague school of proba-
bilists in the works of Hans [10] and Spacek [21] as stochastic generalization of
deterministic fixed point theory. After that till recent times a large number of
research papers focussing on various aspects of random fixed point theory have
appeared in recent literatures. Some of these references are noted in [2], [6],
[12], [13], [14] and [16].

Fixed point iteration schemes for nonlinear operators on Banach and Hilbert
spaces have been developed and studied by many authors in recent times. The
book of Berinde [3] gives a comprehensive survey of the development in this
field.

The development of random fixed point iterations was initiated by Choud-
hury in [5] where random Ishikawa iteration scheme was defined and its strong
convergence to a random fixed point in Hilbert spaces was discussed. After
that several authors have worked on random fixed point iterations some of
which are noted in [1], [4], [7], [8], [9], [17], [18]. In 2005 Beg and Abbas
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[1] constructed and studied different random iterative algorithms for weakly
contractive and asymptotically nonexpansive random operators on arbitrary
Banach spaces. They also established the convergence of an implicit random
iteration process to a common random fixed point for a finite family of asymp-
totically quasi-nonexpansive random operators. Very recently Plubtieng et al.
[17] constructed and established the convergence of an implicit random iter-
ation process with errors for a common random fixed point of a finite family
of asymptotically quasi-nonexpansive random operators in the setting of uni-
formly convex Banach spaces.

The purpose of this paper is to construct a composite implicit random it-
erative scheme with errors for a finite family of asymptotically nonexpansive
random operators and to study the convergence of this iterative process in Ba-
nach spaces. Our results extend and improve some recent results in the existing
literature.

2. Preliminaries

Throughout this paper, (Ω,Σ) denotes a measurable space and X stands for
a real Banach space. For any function T : Ω × X → X we denote the n-th
iterate T (t, T (t, . . . , T (t, x)))) of T by Tn(t, x).

Definition 2.1. A function f : Ω → X is said to be measurable if f−1(B) ∈ Σ
for every Borel subset B of X.

Definition 2.2. An operator T : Ω ×X → X is called a random operator if
T (·, x) : Ω → X is measurable for every x ∈ X.

Definition 2.3. A random operator T : Ω ×X → X is continuous if T (t, ·) :
X → X is continuous for each t ∈ Ω.

Definition 2.4. A measurable function p : Ω → X is said to be a random
fixed point of the random operator T : Ω×X → X if T (t, p(t)) = p(t), ∀t ∈ Ω.
The set of all random fixed points of T is denoted by RF (T ).

Definition 2.5 ([1]). Let C be a nonempty subset of a separable Banach space
X and T : Ω× C → C be a random operator. Then T is said to be

(i) Nonexpansive random operator if

∥T (t, x)− T (t, y)∥ ≤ ∥x− y∥ for all x, y ∈ C and for each t ∈ Ω.

(ii) Asymptotically nonexpansive random operator if there exists a sequence
of measurable functions rn : Ω → [1,∞) with limn→∞ rn(t) = 1 for each t ∈ Ω
such that

∥Tn(t, x)− Tn(t, y)∥ ≤ rn(t)∥x− y∥,∀x, y ∈ C, n ∈ N and for each t ∈ Ω.

(iii) Asymptotically quasi-nonexpansive random operator if there exists a
sequence of measurable functions rn : Ω → [0,∞) with limn→∞ rn(t) = 0, ∀t ∈
Ω such that

∥Tn(t, η(t))− p(t)∥ ≤ (1 + rn(t))∥η(t)− p(t)∥ for each t ∈ Ω,
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where p : Ω → C is a random fixed point of T and η : Ω → C is any measurable
map.

(iv) Uniformly L-Lipschitzian random operator if for any x, y ∈ C and for
each t ∈ Ω

∥Tn(t, x)− Tn(t, y)∥ ≤ L∥x− y∥,
where, n ≥ 1 and L is a positive constant.

(v) Semi-compact random operator if for a sequence of measurable mappings
{ξn} from Ω to C, with limn→∞ ∥ξn(t)−T (t, ξn(t))∥ = 0 for all t ∈ Ω, we have
a subsequence {ξnk

} of {ξn} such that ξnk
(t) → ξ(t) for each t ∈ Ω, where ξ is

a measurable mapping from Ω to C.

An asymptotically nonexpansive random operator is uniformly L-Lipschitz-
ian random operator.

Definition 2.6. A finite family {Ti : i ∈ I} of N continuous random operators

from Ω × C → C with F =
∩N

i=1 RF (Ti) ̸= ∅ is said to satisfy Condition(B)
if there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r ∈ (0,∞) such that for all t ∈ Ω

f(d(x(t), F )) ≤ max
1≤i≤N

{∥x(t)− Ti(t, x(t))∥} for all x,

where x : Ω → C is a measurable function.

Lemma 2.1 ([11]). Let (Ω,Σ) be a measurable space, X be a separable Banach
space and T : Ω × X → X be a continuous random operator. Then for any
measurable function x : Ω → X, the function T (t, x(t)) is also measurable.

We define the composite implicit random iterative process with errors in the
following:

Definition 2.7 (Composite implicit random iterative scheme with er-
rors). Let {Ti : i ∈ I = {1, 2, . . . , N}} be a finite family of N continuous
random operators from Ω × C to C where C be a nonempty closed convex
subset of a separable Banach space X. Let ξ0 : Ω → C be any measurable
function. Then composite implicit random iteration scheme with errors is de-
fined as follows:

ξ1(t) = α1ξ0(t) + β1T1(t, a1ξ1(t) + b1T1(t, ξ1(t)) + c1g1(t)) + γ1f1(t)
ξ2(t) = α2ξ1(t) + β2T2(t, a2ξ2(t) + b2T2(t, ξ2(t)) + c2g2(t)) + γ2f2(t)
· · ·

ξN (t) = αNξN−1(t) + βNTN (t, aNξN (t) + bNTN (t, ξN (t)) + cNgN (t)) + γNfN (t)
ξN+1(t) = αN+1ξN (t) + βN+1T

2
1 (t, aN+1ξN+1(t) + bN+1T

2
1 (t, ξN+1(t))

+cN+1gN+1(t)) + γN+1fN+1(t)
· · ·

ξ2N (t) = α2Nξ2N−1(t) + β2NT 2
N (t, a2Nξ2N (t) + b2NT 2

N (t, ξ2N (t)) + c2Ng2N (t))
+γ2Nf2N (t)

ξ2N+1(t) = α2N+1ξ2N (t) + β2N+1T
3
1 (t, a2N+1ξ2N+1(t) + b2N+1T

3
1 (t, ξ2N+1(t))

+c2N+1g2N+1(t)) + γ2N+1f2N+1(t)
· · ·
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which can be written in the compact form as{
ξn(t) = αnξn−1(t) + βnT

k(n)
i(n) (t, ηn(t)) + γnfn(t)

ηn(t) = anξn(t) + bnT
k(n)
i(n) (t, ξn(t)) + cngn(t), n ≥ 1, ∀t ∈ Ω,

(2.1)

where {αn}, {βn}, {γn}, {an}, {bn}, {cn} are sequences in [0, 1] with αn + βn +
γn = an + bn + cn = 1 and {fn}, {gn} are bounded sequences of measurable
functions from Ω to C.

Remark 2.1. By Lemma 2.1 the sequence {ξn} defined in (2.1) is a sequence of
measurable functions.

Lemma 2.2 ([19, Lemma 1]). Let {an}, {bn} and {δn} be sequences of non-
negative real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n ≥ 1.

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then

(i) limn→∞ an exists,
(ii) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 2.3 ([20]). Suppose that X is a uniformly convex Banach space and
0 < p ≤ tn ≤ q < 1 for all positive integers n. Also suppose that {xn} and {yn}
are two sequences in X such that lim supn→∞ ∥xn∥ ≤ r, lim supn→∞ ∥yn∥ ≤ r
and limn→∞ ∥tnxn+(1− tn)yn∥ = r hold for some r ≥ 0. Then limn→∞ ∥xn−
yn∥ = 0.

3. Main results

In this section we discuss the convergence of the composite implicit random
iteration scheme with errors to the common random fixed point of the finite
family of asymptotically nonexpansive random operators.

Theorem 3.1. Let X be a separable Banach space and C be a nonempty closed
convex subset of X. Let {Ti : i ∈ I} be N asymptotically nonexpansive random
operators from Ω × C to C with the sequence of measurable mappings {rin} :
Ω → [1,∞) satisfying

∑∞
n=1(rin(t) − 1) < ∞ for each t ∈ Ω and for all i ∈

I = {1, 2, . . . , N}. Suppose that F =
∩N

i=1 RF (Ti) ̸= ∅. Let {ξn} be the im-
plicit random iterative sequence with errors defined by (2.1) with the additional
assumption 0 < α ≤ αn, βn ≤ β < 1 and

∑∞
n=1 γn < ∞,

∑∞
n=1 cn < ∞. Then

{ξn} converges strongly to a common random fixed point of the random opera-
tors {Ti, i ∈ I} if and only if for all t ∈ Ω, lim infn→∞ d(ξn(t), F ) = 0, where
d(ξn(t), F ) = inf{∥ξn(t)− ξ(t)∥ : ξ ∈ F}.

Proof. Let ξ ∈ F . Since {fn}, {gn} are bounded sequences of measurable func-
tions from Ω to C, we can put for each t ∈ Ω,

M(t) = sup
n≥1

∥fn(t)− ξ(t)∥ ∨ sup
n≥1

∥gn(t)− ξ(t)∥.
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Obviously M(t) < ∞ for each t ∈ Ω. Also let for each n ≥ 1, rn(t) =
max{rin(t) : i = 1, 2, . . . , N}. Thus we have by the condition of the theo-
rem

∑∞
n=1(rn(t)− 1) < ∞ for each t ∈ Ω. Now for ξ ∈ F and for each t ∈ Ω,

∥ηn(t)− ξ(t)∥ = ∥anξn(t) + bnT
k(n)
i(n) (t, ξn(t)) + cngn(t)− ξ(t)∥

≤ an∥ξn(t)− ξ(t)∥+ bn∥T k(n)
i(n) (t, ξn(t))− ξ(t)∥+ cn∥gn(t)− ξ(t)∥

≤ an∥ξn(t)− ξ(t)∥+ bnrk(n)(t)∥ξn(t)− ξ(t)∥+ cnM(t)

= an∥ξn(t)− ξ(t)∥+ bn(1 + µn(t))∥ξn(t)− ξ(t)∥+ cnM(t),

(where µn(t) = rk(n)(t)− 1)

≤ (1 + µn(t))∥ξn(t)− ξ(t)∥+ cnM(t).(3.1)

Also,

∥ξn(t)− ξ(t)∥ = ∥αnξn−1(t) + βnT
k(n)
i(n) (t, ηn(t)) + γnfn(t)− ξ(t)∥

≤ αn∥ξn−1(t)− ξ(t)∥+ βn∥T k(n)
i(n) (t, ηn(t))− ξ(t)∥

+ γn∥fn(t)− ξ(t)∥
≤ αn∥ξn−1(t)− ξ(t)∥+ βnrk(n)(t)∥ηn(t)− ξ(t)∥+ γnM(t)

≤ αn∥ξn−1(t)− ξ(t)∥+ βn(1 + µn(t))[(1 + µn(t))∥ξn(t)− ξ(t)∥
+ cnM(t)] + γnM(t)

= αn∥ξn−1(t)− ξ(t)∥+ βn(1 + µn(t))
2∥ξn(t)− ξ(t)∥

+ βncn(1 + µn(t))M(t) + γnM(t)

≤ αn∥ξn−1(t)− ξ(t)∥+ (1− αn)(1 + pn(t))∥ξn(t)− ξ(t)∥
+ [βncn(1 + µn(t)) + γn]M(t), (where pn(t)=2µn(t)+µn(t)

2)

≤ αn∥ξn−1(t)− ξ(t)∥+ (1− αn + pn(t))∥ξn(t)− ξ(t)∥
+ [βncn(1 + µn(t)) + γn]M(t).

By rearranging both sides we have that

∥ξn(t)− ξ(t)∥

≤ ∥ξn−1(t)− ξ(t)∥+ pn(t)

αn
∥ξn(t)− ξ(t)∥+ βncn(1 + µn(t)) + γn

αn
M(t)

≤ ∥ξn−1(t)− ξ(t)∥+ pn(t)

α
∥ξn(t)− ξ(t)∥+ βncn(1 + µn(t)) + γn

α
M(t)

which implies that

∥ξn(t)− ξ(t)∥ ≤ α

α− pn(t)
∥ξn−1(t)− ξ(t)∥+ βncn(1 + µn(t)) + γn

α− pn(t)
M(t)

= (1 +
pn(t)

α− pn(t)
)∥ξn−1(t)− ξ(t)∥+ βncn(1 + µn(t)) + γn

α− pn(t)
M(t).(3.2)
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Since
∑∞

n=1(rk(n)(t) − 1) < ∞ for each t ∈ Ω, we have
∑∞

n=1 µn(t) < ∞ and

hence
∑∞

n=1 pn(t) < ∞. Therefore limn→∞ pn(t) = 0 for each t ∈ Ω. Thus for
t ∈ Ω, there exists n1 ∈ N such that pn(t) <

α
2 for all n ≥ n1. Thus from (3.2)

we have that, for all n ≥ n1

∥ξn(t)− ξ(t)∥ ≤ (1 + 2
pn(t)

α
)∥ξn−1(t)− ξ(t)∥+ βncn(1 + µn(t)) + γn

α
2M(t)

= (1 + λn(t))∥ξn−1(t)− ξ(t)∥+ σn(t),(3.3)

where λn(t) =
2
αpn(t) and σn(t) =

βncn(1+µn(t))+γn

α 2M(t). Thus
∑∞

n=1 λn(t) <
∞,

∑∞
n=1 σn(t) < ∞. This gives that

d(ξn(t), F ) ≤ (1 + λn(t)d(ξn−1(t), F ) + σn(t).

Hence by Lemma 2.2 we have limn→∞ d(ξn(t), F ) exists for each t ∈ Ω. Further
by the condition of the theorem we have for all t ∈ Ω,

lim
n→∞

d(ξn(t), F ) = 0.(3.4)

Now from (3.3) we have that

∥ξn+m(t)− ξ(t)∥(3.5)

≤ [1 + λn+m(t)]∥ξn+m−1(t)− ξ(t)∥+ σn+m(t)

≤ eλn+m(t)∥ξn+m−1(t)− ξ(t)∥+ σn+m(t)

≤ eλn+m(t)+λn+m−1(t)∥ξn+m−2 − ξ(t)∥+ eλn+m(t)σn+m−1(t) + σn+m(t)

...

≤ e
∑n+m

i=n+1 λi(t)∥ξn(t)− ξ(t)∥+
n+m−1∑
k=n+1

σk(t)e
∑n+m

i=k+1 λi(t) + σn+m(t)

≤ R(t)∥ξn(t)− ξ(t)∥+R(t)
∞∑

k=n+1

σk(t)

for each t ∈ Ω and for all natural numbers m,n where R(t) = e
∑∞

n=1 λn(t) < ∞.
Therefore for any ξ ∈ F we have that

∥ξn+m(t)− ξn(t)∥ ≤ R(t)∥ξn(t)− ξ(t)∥+R(t)

∞∑
k=n+1

σk(t) + ∥ξn(t)− ξ(t)∥

= (R(t) + 1)∥ξn(t)− ξ(t)∥+R(t)
∞∑

k=n+1

σk(t).(3.6)

Since
∑∞

n=1 σn(t) < ∞ and limn→∞ d(ξn(t), F ) = 0, there exists n2 ∈ N such
that for all n ≥ n2 we have d(ξn(t), F ) < ϵ

2(R(t)+1) and
∑∞

k=n+1 σk(t) <
ϵ

2R(t) .

So there exists q ∈ F such that ∥ξn(t) − q(t)∥ < ϵ
2(R(t)+1) for all n ≥ n2.
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Therefore from (3.6) we have that for all n ≥ n2,

∥ξn+m(t)− ξn(t)∥ ≤ (R(t) + 1)∥ξn(t)− q(t)∥+R(t)

∞∑
k=n+1

σk(t)

< (R(t) + 1)
ϵ

2(R(t) + 1)
+R(t)

ϵ

2R(t)
= ϵ

which in turn implies that {ξn(t)} is a cauchy sequence for each t ∈ Ω. There-
fore ξn(t) → p(t) as n → ∞ for each t ∈ Ω, where p : Ω → F , being the limit
of the sequence of measurable functions is also measurable. Now we prove that
p ∈ F . Since for each t ∈ Ω, ξn(t) → p(t) as n → ∞ there exists n3 ∈ N such
that ∥ξn(t) − p(t)∥ < ϵ

2(1+r1(t))
for all n ≥ n3. Since limn→∞ d(ξn(t), F ) = 0

for each t ∈ Ω, there exists n4 ∈ N such that d(ξn(t), F ) < ϵ
2(1+r1(t))

for all

n ≥ n4. So there exists ξ∗ ∈ F such that ∥ξn(t) − ξ∗(t)∥ ≤ ϵ
2(1+r1(t))

for all

n ≥ n4. Let n5 = max{n3, n4}. Now for all l ∈ I and for all n ≥ n5

∥Tl(t, p(t))− p(t)∥ ≤ ∥Tl(t, p(t))− ξ∗(t)∥+ ∥ξ∗(t)− p(t)∥
≤ ∥Tl(t, p(t))− Tl(t, ξ

∗(t))∥+ ∥ξ∗(t)− p(t)∥
≤ r1(t)∥ξ∗(t)− p(t)∥+ ∥ξ∗(t)− p(t)∥
= (1 + r1(t))∥ξ∗(t)− p(t)∥
≤ (1 + r1(t))∥ξ∗(t)− ξn(t)∥+ (1 + r1(t))∥ξn(t)− p(t)∥

< (1 + r1(t))
ϵ

2(1 + r1(t))
+ (1 + r1(t))

ϵ

2(1 + r1(t))
= ϵ

which implies that Tl(t, p(t)) = p(t) for all l ∈ I and for each t ∈ Ω. Therefore
p ∈ F . Thus {ξn} converges strongly to a common random fixed point of
{Ti, i ∈ I}. □

Lemma 3.1. Let X be a uniformly convex separable Banach space and C be
a nonempty closed convex subset of X. Let {Ti : i ∈ I} be N asymptotically
nonexpansive random operators from Ω×C to C with the sequence of measurable
mappings {rin} : Ω → [1,∞) satisfying

∑∞
n=1(rin(t) − 1) < ∞ for each t ∈ Ω

and for all i ∈ I = {1, 2, . . . , N}. Suppose that F =
∩N

i=1 RF (Ti) ̸= ∅. Let {ξn}
be the implicit random iterative sequence with errors defined by (2.1) with the
additional assumption 0 < α ≤ αn, βn ≤ β < 1 and

∑∞
n=1 γn < ∞,

∑∞
n=1 cn <

∞. Then

lim
n→∞

∥ξn(t)− Tl(t, ξn(t))∥ = 0 for each t ∈ Ω and for all l = 1, 2, . . . , N.

Proof. Let ξ ∈ F be arbitrary. Since {fn}, {gn} are bounded sequences of
measurable functions from Ω to C, so we can put for each t ∈ Ω,

M(t) = sup
n≥1

∥fn(t)− ξ(t)∥ ∨ sup
n≥1

∥gn(t)− ξ(t)∥.

Obviously M(t) < ∞ for each t ∈ Ω. Also let for each n ≥ 1, rn(t) =
max{rin(t) : i = 1, 2, . . . , N}. Thus we have

∑∞
n=1(rn(t) − 1) < ∞ for each
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t ∈ Ω. From (3.3) we have that

∥ξn(t)− ξ(t)∥ ≤ (1 + λn(t))∥ξn−1(t)− ξ(t)∥+ σn(t),

where
∑∞

n=1 λn(t) < ∞,
∑∞

n=1 σn(t) < ∞. Hence by Lemma 2.2 we get that
limn→∞ ∥ξn(t)− ξ(t)∥ exists for all ξ ∈ F and for each t ∈ Ω. Thus {ξn(t)} is
a bounded sequence for each t ∈ Ω. Let limn→∞ ∥ξn(t) − ξ(t)∥ = at for some
at ≥ 0. From (3.1) we get that

∥ηn(t)− ξ(t)∥ ≤ (1 + µn(t))∥ξn(t)− ξ(t)∥+ cnM(t).

Taking limsup on the both sides of the above inequality we get that

lim sup
n→∞

∥ηn(t)− ξ(t)∥ ≤ at for each t ∈ Ω.(3.7)

Now

at = lim
n→∞

∥ξn(t)− ξ(t)∥(3.8)

= lim
n→∞

∥αnξn−1(t) + βnT
k(n)
i(n) (t, ηn(t)) + γnfn(t)− ξ(t)∥

= lim
n→∞

∥(1− βn)(ξn−1(t)− ξ(t) + γn(fn(t)− ξn−1(t)))

+ βn(T
k(n)
i(n) (t, ηn(t))− ξ(t) + γn(fn(t)− ξn−1(t)))∥.

Now for each t ∈ Ω,

∥ξn−1(t)− ξ(t)+γn(fn(t)− ξn−1(t))∥ ≤ ∥ξn−1(t)− ξ(t)∥+γn∥fn(t)− ξn−1(t)∥.
Taking limsup on the both sides of above we get for each t ∈ Ω,

lim sup
n→∞

∥ξn−1(t)− ξ(t) + γn(fn(t)− ξn−1(t))∥(3.9)

≤ lim sup
n→∞

(∥ξn−1(t)− ξ(t)∥+ γn∥fn(t)− ξn−1(t)∥) = at.

Also,

∥T k(n)
i(n) (t, ηn(t))− ξ(t) + γn(fn(t)− ξn−1(t))∥

≤ ∥T k(n)
i(n) (t, ηn(t))− ξ(t)∥+ γn∥fn(t)− ξn−1(t)∥

≤ rk(n)(t)∥ηn(t)− ξ(t)∥+ γn∥fn(t)− ξn−1(t)∥.
Taking limsup on the both sides of above we get

(3.10) lim sup
n→∞

∥T k(n)
i(n) (t, ηn(t))− ξ(t) + γn(fn(t)− ξn−1(t))∥ ≤ at.

From (3.8), (3.9), (3.10) and Lemma 2.3 we get

(3.11) lim
n→∞

∥T k(n)
i(n) (t, ηn(t))− ξn−1(t)∥ = 0 for each t ∈ Ω.

Again for each t ∈ Ω,

∥ξn(t)− ξn−1(t)∥ = ∥αnξn−1(t) + βnT
k(n)
i(n) (t, ηn(t)) + γnfn(t)− ξn−1(t)∥

≤ βn∥T k(n)
i(n) (t, ηn(t))− ξn−1(t)∥+ γn∥fn(t)− ξn−1(t)∥
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→ 0 as n → ∞.(3.12)

Hence for each t ∈ Ω,

lim
n→∞

∥ξn(t)− ξn+l(t)∥ = 0 for each t ∈ Ω and for all l ∈ I.(3.13)

Since

∥ξn(t)− T
k(n)
i(n) (t, ηn(t))∥ ≤ ∥ξn(t)− ξn−1(t)∥+ ∥ξn−1(t)− T

k(n)
i(n) (t, ηn(t))∥,

by using (3.11), (3.12) we get

(3.14) lim
n→∞

∥ξn(t)− T
k(n)
i(n) (t, ηn(t))∥ = 0 for each t ∈ Ω.

Now

∥ηn(t)− ξn(t)∥

= ∥anξn(t) + bnT
k(n)
i(n) (t, ξn(t)) + cngn(t)− ξn(t)∥

≤ bn∥T k(n)
i(n) (t, ξn(t))− ξn(t)∥+ cn∥gn(t)− ξn(t)∥

≤ bn[∥T k(n)
i(n) (t, ξn(t))− T

k(n)
i(n) (t, ηn(t))∥+ ∥T k(n)

i(n) (t, ηn(t))− ξn(t)∥]
+ cn∥gn(t)− ξn(t)∥

≤ bn[rk(n)(t)∥ξn(t)− ηn(t)∥+ ∥T k(n)
i(n) (t, ηn(t))− ξn(t)∥]

+ cn∥gn(t)− ξn(t)∥

≤ (1− an)(1 + µn(t))∥ξn(t)− ηn(t)∥+ (1− an)∥T k(n)
i(n) (t, ηn(t))− ξn(t)∥

+ cn∥gn(t)− ξn(t)∥

≤ (1− an + µn(t))∥ξn(t)− ηn(t)∥+ (1− an)∥T k(n)
i(n) (t, ηn(t))− ξn(t)∥

+ cn∥gn(t)− ξn(t)∥

which implies that

∥ηn(t)− ξn(t)∥ ≤ µn(t)

α
∥ξn(t)− ηn(t)∥+

(
1

α
− 1

)
∥T k(n)

i(n) (t, ηn(t))− ξn(t)∥

+
cn
α
∥gn(t)− ξn(t)∥

which implies that

(3.15)

∥ξn(t)− ηn(t)∥ ≤ 1− α

α− µn(t)
∥T k(n)

i(n) (t, ηn(t))− ξn(t)∥

+
cn

α− µn(t)
∥gn(t)− ξn(t)∥.

Since
∑∞

n=1 µn(t) < ∞ for each t ∈ Ω, we have limn→∞ µn(t) = 0 for each
t ∈ Ω. So for t ∈ Ω, there exists n6 ∈ N such that µn(t) <

α
2 for all n ≥ n6.
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Thus from (3.15) we get for t ∈ Ω and for all n ≥ n6 that

(3.16) ∥ξn(t)−ηn(t)∥ ≤ 2(1− α)

α
∥T k(n)

i(n) (t, ηn(t))−ξn(t)∥+
2cn
α

∥gn(t)−ξn(t)∥.

From (3.14), (3.16) we get that for each t ∈ Ω,

(3.17) ∥ξn(t)− ηn(t)∥ → 0 as n → ∞.

Now

∥ξn−1(t)− Tn(t, ξn(t))∥(3.18)

≤ ∥ξn−1(t)− T
k(n)
i(n) (t, ηn(t))∥+ ∥T k(n)

i(n) (t, ηn(t))− Tn(t, ξn(t))∥

≤ ∥ξn−1(t)− T
k(n)
i(n) (t, ηn(t))∥+ L∥T k(n)−1

i(n) (t, ηn(t))− ξn(t)∥

= σn(t) + L∥T k(n)−1
i(n) (t, ηn(t))− ξn(t)∥,

where σn(t) = ∥ξn−1(t)− T
k(n)
i(n) (t, ηn(t))∥ for each t ∈ Ω. From (3.11) we have

for each t ∈ Ω, σn(t) → 0 as n → ∞. Again

∥T k(n)−1
i(n) (t, ηn(t))− ξn(t)∥(3.19)

≤ ∥T k(n)−1
i(n) (t, ηn(t))− T

k(n)−1
i(n−N)(t, ξn−N (t))∥

+ ∥T k(n)−1
i(n−N)(t, ξn−N (t))− T

k(n)−1
i(n−N)(t, ηn−N (t))∥

+ ∥T k(n)−1
i(n−N)(t, ηn−N (t))− ξ(n−N)−1(t)∥+ ∥ξ(n−N)−1(t)− ξn(t)∥.

Now for each n > N, n = (n−N) (mod N). Again since n = (k(n)−1)N+i(n),
we have k(n−N) = k(n)− 1 and i(n−N) = i(n). So from (3.19) we have

∥T k(n)−1
i(n) (t, ηn(t))− ξn(t)∥(3.20)

≤ ∥T k(n−N)
i(n−N) (t, ηn(t))− T

k(n−N)
i(n−N) (t, ξn−N (t))∥

+ ∥T k(n−N)
i(n−N) (t, ξn−N (t))− T

k(n−N)
i(n−N) (t, ηn−N (t))∥

+ ∥T k(n−N)
i(n−N) (t, ηn−N (t))− ξ(n−N)−1(t)∥+ ∥ξ(n−N)−1(t)− ξn(t)∥

≤ L∥ηn(t)− ξn−N (t)∥+ L∥ξn−N (t)− ηn−N (t)∥+ σn−N (t)

+ ∥ξ(n−N)−1(t)− ξn(t)∥.

So from (3.18) and (3.20) we have for each t ∈ Ω,

∥ξn−1(t)− Tn(t, ξn(t))∥
(3.21)

≤ σn(t) + L2∥ηn(t)− ξn−N (t)∥+ L2∥ξn−N (t)− ηn−N (t)∥+ Lσn−N (t)

+ L∥ξ(n−N)−1(t)− ξn(t)∥
≤ σn(t) + L2(∥ηn(t)− ξn(t)∥+ ∥ξn(t)− ξn−N (t)∥) + L2∥ξn−N (t)− ηn−N (t)∥

+ Lσn−N (t) + L∥ξ(n−N)−1(t)− ξn(t)∥.
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Now for each t ∈ Ω, it follows that

(3.22) ∥ξn−1(t)− Tn(t, ξn(t))∥ → 0 as n → ∞.

Now by (3.22) and (3.12) we get that for each t ∈ Ω

∥ξn(t)− Tn(t, ξn(t))∥(3.23)

≤ ∥ξn(t)− ξn−1(t)∥+ ∥ξn−1(t)− Tn(t, ξn(t))∥ → 0 as n → ∞.

Now for each l ∈ {1, 2, . . . , N}, by using (3.23) and (3.13) we get that

∥ξn(t)− Tn+l(t, ξn(t))∥ ≤ ∥ξn(t)− ξn+l(t)∥+ ∥ξn+l(t)− Tn+l(t, ξn+l(t))∥
+ ∥Tn+l(t, ξn+l(t))− Tn+l(t, ξn(t))∥

≤ ∥ξn(t)− ξn+l(t)∥+ ∥ξn+l(t)− Tn+l(t, ξn+l(t))∥
+ L∥ξn+l(t)− ξn(t)∥

= (1 + L)∥ξn(t)−ξn+l(t)∥+∥ξn+l(t)−Tn+l(t, ξn+l(t))∥
→ 0 as n → ∞ for each t ∈ Ω.

Consequently we have

∥ξn(t)− Tl(t, ξn(t))∥ → 0 as n → ∞ for each t ∈ Ω and for each l ∈ I. □

Theorem 3.2. Let X be a uniformly convex separable Banach space and C
be a nonempty closed convex subset of X. Let {Ti : i ∈ I} be N uniformly
L-Lipschitzian asymptotically nonexpansive random operators from Ω × C to
C with the sequence of measurable mappings {rin} : Ω → [1,∞) satisfying∑∞

n=1(rin(t) − 1) < ∞ for each t ∈ Ω and for all i ∈ I = {1, 2, . . . , N}.
Suppose that F =

∩N
i=1 RF (Ti) ̸= ∅. Let {ξn} be the random composite implicit

iterative sequence with errors defined by (2.1) with the additional assumption
0 < α ≤ αn, βn ≤ β < 1 and

∑∞
n=1 γn < ∞,

∑∞
n=1 cn < ∞. If the family

{Ti : i ∈ I} satisfies Condition(B) for each t ∈ Ω, then {ξn} converges strongly
to a common random fixed point of {Ti, i ∈ I}.

Proof. By the proof of Theorem 3.1 we have limn→∞ d(ξn(t), F ) exists for each
t ∈ Ω. Again by Lemma 3.1 and Condition(B), we have that

lim
n→∞

f(d(ξn(t), F )) = 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function with f(0) = 0 so we have
limn→∞ d(ξn(t), F ) = 0. Hence the result follows by Theorem 3.1. □

Theorem 3.3. Let X be a uniformly convex separable Banach space and C
be a nonempty closed convex subset of X. Let {Ti : i ∈ I} be N uniformly
L-Lipschitzian asymptotically nonexpansive random operators from Ω × C to
C with the sequence of measurable mappings {rin} : Ω → [1,∞) satisfying∑∞

n=1(rin(t)−1) < ∞ for each t ∈ Ω and for all i ∈ I = {1, 2, . . . , N}. Suppose
that F =

∩N
i=1 RF (Ti) ̸= ∅ and let one member of the family {Ti : i ∈ I} to

be semi-compact random operator. Let {ξn} be the implicit random iterative
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sequence with errors defined by (2.1) with the additional assumption 0 < α ≤
αn, βn ≤ β < 1 and

∑∞
n=1 γn < ∞,

∑∞
n=1 cn < ∞, then {ξn} converges strongly

to a common random fixed point of {Ti, i ∈ I}.

Proof. From Lemma 3.1 we get that limn→∞ ∥ξn(t)−Tl(t, ξn(t))∥ = 0 for each
t ∈ Ω and for each l ∈ I. Let us assume that T1 is semi-compact random
operator. So there exists a subsequence {ξnk

(t)} of {ξn(t)} such that ξnk
(t) →

ξ(t) for each t ∈ Ω, where ξ is a measurable mapping from Ω to C. Now

∥ξ(t)− Tl(t, ξ(t))∥ = lim
k→∞

∥ξnk
(t)− Tl(t, ξnk

(t))∥

= 0 for each t ∈ Ω and for each l ∈ I.

From above it follows that ξ ∈ F . Since {ξn(t)} has a subsequence {ξnk
(t)}

such that ξnk
(t) → ξ(t) for each t ∈ Ω, we have that lim infn→∞ d(ξn(t), F ) = 0.

Hence the result follows by Theorem 3.1. □
Remark 3.1. (1) Theorem 3.1 and Theorem 3.3 extend and improve Theo-
rem 4.1 and Theorem 4.2 of [1] respectively.

(2) Our results in this paper are also valid for the composite implicit random
iterative process with errors considered in the sense of Liu [15]. In light of this
remark our results extend and improve the corresponding results of [17].
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