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PROXIMITY MAPS FOR CERTAIN SPACES

MuN BAE LEE AND SUNG Ho PARK

1. Introduction

Let K be a nonempty subset of a normed linear space X and let
z € X. An element ko in K satisfying

lz = koll = d(z, K) := inf |lz - k|

is called a best approximation to z from K. For any « € X, the set of
all best approximations to z from K is denoted by

Py(z)={ke€ K : |z - k| =d(z,K)}.

The set K is called proximinal (resp., Chebyshev) if for every z € X,
Py (z) is nonempty (resp., a singleton).

Let K be a proximinal subset of X. The set-valued map Pk : X —
2K thus defined is called the metric projection onto K and the kernel
of the metric projection Pk is the set

ker P : ={z € X :0¢€ Pg(x)}
={reX:|z| =d(z K)}

A map p : X — K which associates with each element of X one of its
best approximation in K is called a proximity map.
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In this paper, we are interested in proximity maps which are contin-
uous, linear or Lipschitz continuous. In section 2, we extend a result
of continuous proximity maps in L,(S, X) in [4] where X is a Banach
space and (S, 2, 1) is a o-finite measure space and the existence of lin-
ear proximity maps and Lipschitz continuous maps are discussed. In
section 3, we consider the space C(S,Y’) of all continuous maps f from
a compact Hausdorff space S into a Banach space Y and prove that if
C(S, H) has a continuous proximity map then H has a continuous prox-

imity map. In section 4, we discuss some results on the proximinality
in L(X,Y).

2. Proximity maps for L,(S, G)

Let X be a Banach space, G a closed subspace of X and (S, 2, u) be
a o-finite measure space.

DEFINITION 2.1. Let (M, d) be a metric space. A Borel measurable
function from S to M is called strongly measurable if it is the pointwise
limit of a sequence of simple Borel measurable functions from S to M.

For 1 < p < 0o, L,(S, X)) is the Banach space consisting of (equiva-
lence classes of) strongly measurable functions f : § — X such that
J I £(s)||IPdu(s) is finite. For p = 0o, Loo(S, X) is the Banach space of
essentially bounded strongly measurable functions f : § — X. For
FeL,(S X),

11, = ([ W @IPdu(s)? 1<p< o,

and
[ flloo = ess supses||f(s)lI-

For A € Q and a strongly measurable function f : § — X, we
write I4 for the characteristic function of A and I, ® f denoted the
function F(s) = Ia(s)f(s). In particular, for A € Q and z € X,
(Ia®z)(s) = I4(s)z.

THEOREM 2.2. [11] Let 1 < p < co. Then the following are equiva-
lent:

(i) Lp(S,G) is proximinal in L,(S, X);
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(ii) L1(S,G) is proximinal in L(S, X).

THEROEM 2.3. Let G be a closed subspace of X and 1 < p < 0.
Then
(i) If G has a continuous proximity map, then L,(S,G) is proxim-
inal.
(i) If Lp(S,G) is proximinal in L,(S,X), then G is proximinal in
X. Moreover, if L,(S,G) has a continuous proximity map, then
G has a continuous proximity map.

Proof. (i) Let # : X — G be a continuous proximity map. Let
S(X),S8(G) and S(ker Pg) be the class of simple integrable functions
with values in X, G and ker Pg, respectively. For u = St Is Qi €
S(X) (E:NE; =0 if i # j), let

n n
szIE,.@yi and w———ZIEi(X)wi
i=1 i=1

where y; = m(x;) € Pe(x;) and w; = z; — ;. Then v € S(G) and
w € S(ker Pg). Then one can easily obtain that

(%) v € Pp_(s,6)(u), w € Lp(S,ker Pg) and u=v+w.

Let f € L,(S,X). Then there exists a sequence {f,} of simple inte-
grable functions in L, (S, X) such that || fn(s)—f(s)|| — 0. Then, by (),
fn = gn+hy, for some g, € Pp_(s,6)(fr) and hy, € Lp(S, ker Pg) (gr and
h., simple integrable). Define g : X — G by g(s) = n(f(s))- Since 7 is
continuous and T(fa(5)) = gn(s), 9n(5) = 7(fu(s)) = T((s)) = ().
Hence g is strongly measurable. Since for any s € S, g(s) is a best
approximation of f(s), it follows that g € Pp,_(s a)(f)-

(i) Since (S,Q, ) is o-finite, we can assume S = Unen Ay, Ap € 0
such that A, C An41 and u(A,) < oo for each n & N. Then there must
be ko € N such that 0 < p(Ag,) < co. Let € X. Define f, : § — X
by

Fo(s) = p(Ake)? " (La,, ® 2)(5)
forallse S.
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Then f. € L,(S, X). By the assumption, there exists f, € L,(S,G)
such that || f; — foll, = d(fz, Lp(S, G)). So

“fl' - fOHP < ”fl‘ M(Ako) IAkO ®gllp
- /J’(Ako) “IAk QT — IAkO ® g”P

=MAmF”(A lz — glPdu(s))®

0

= 1(Ak,)? "z - g|

for all g € G. Since [|fz(s) = fo(s)ll < [[fz(s) — h(s)]| a.e. for any
strongly measurable function h : S — G, fo = I, ® fo [11]. Put

zo = [ fo(s)du(s). Then

o = ——aoll = —— u(4s)z o
#(Akg)* u(Ako)”
=l [0~ Solpauio)
< —p [ 1520~ o)
e 5 1-1
< o (110 = Pt )
<le-si

for all g € G. Hence ——1-)Tx0 is a best approximation of z in G.
#(Agy)P
Let P : L,(S,X) — L,(S,G) be a continuous proximity map. De-
fine @ : X — G by

Q) = /wmm> u(s).
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Then Q is a proximity map for G. Now, let z,, — x in X. Then
”fttn _ frl‘llp ”“(Ako) _lIAk Q@ Tn — (Aku) IAko ®wup
= u(Ak)3 ([ o= alPaut)

Akg

3 -

2_
= (Ak,)? H@n — 2|l = 0.
Since P is continuous, we have Pf, — Pf; in L,(S, X). Since

10z~ Qall =~ / (Pfo.)(s) — (Pf)(s))dus)]

_ s) — =) (SHIP » 0 -5
Symko)% / 1P )(s) = (P L) () Pdi(s)) ? 1(Ar)

1
= ———5<1Pfs, = Pfallp = 0,
IJ'(Ak‘o) ’

Q is continuous. d

REMARK.

(i) When (S,Q, u) is a finite measure space, the above theorem is
just Theorem 2.1 of [4].

(ii) In {11], You and Guo proved that if L;(5,G) is proximinal in
L1(S, X), then G is proximinal in X. Thus the first part of
Theorem 2.3 (ii) can be proved by Theorem 2.2 but we proved
it directly.

THEOREM 2.4. Let G be a closed subspace of X and 1 < p < oo.
Then the following are equivalent:
(i) G has a linear proximity map;
(i) Lp(S,G) has a linear proximity map.

Proof. (i)=>(ii) Let 7 be a linear proximity map of X onto G. Define
@, : Ly(S,X) — Lp(S,G) by ®:(f) = mo f. Then @, is a proximity
map for L,(S,G). Take any f1, f2 € Lp(S,X) and a € R. Then

(®r(afi))(s) = (moafi)(s) = m(afi(s))
— an(fi(5)) = a(@xif1))(s)

263



Mun Bae Lee and Sung Ho Park

for all s € S and

(@ (f1 + f2))(s) = (w0 (f1 + f2))(s) = 7(f1(s) + fa(s))
= m(f1(s)) +7(f2(5)) = (2x(f1))(s) + (B (f2))(5)

for all s € S. Hence L,(S,G) has a linear proximitvy map.
(ii)=(i) For z € X, define f, : S — X by

fa(s) = w(Ak,)? " (La,, ® 2)(s)

for all s € S. Then f, € L(S, X). Let P: L,(S,X) — L,(S,G) be a
linear proximity map. Define @ : X — G by
1
Q@) = —— [(PL)(6)du(s)
p(Aky )

Then Q is a proximity map for G. Note that f.., = f; + f, and
fax = afz for all z,y € X and o € R. Thus for every z,y € X and
a € R,

Q) =~ [(PLaey) ()
1
= z y d S
T [P+ £))6)duts)
1 1
= — [ (Pf.)(s)du(s) + r [ (Pfy)(s)du(s
ot [P0+ [Pr)o)
= Q(z) + Q(y)
and
Qla) = — Al ; [Prao)iuts)
kolF
1 .
= o Pf)(s)du!
T [atPre)duis)
= aQ(x).
Hence @ is linear. O
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THEOREM 2.5. [3] Let G be a proximinal subspace of X. Then the
following are equivalent:

(i) G has a linear proximity map;

(ii) ker Pg contains a closed subspace W such that X =G & W.
Moreover, if (i) holds, then a linear proximity map for G can be defined
by

plg+w)=g9, g+weGdW.

DEFINITION 2.6. [2] A subspace G of a Banach space X is called
1-complemented in X if there is a closed subspace W of X such that
X = G® W and the projection P : X — W is a contractive projection.

In [2], Deeb and Khalil proved that if G is 1-complemented in X,
then G is proximinal in X.

THEOREM 2.7. Let G be a subspace of a Banach space X. Then
following are equivalent:

(i) G is 1-complemented in X;
(ii) G is proximinal in X and has a linear proximity map.

Proof. (i) = (ii) Let X =G @® W and P: X --» W be a contractive
projection. Let w € W. Then for any g € G, ||P(w — g)|| = [lw]| <
lw — g||. Thus W C ker P;. Hence G has a linear proximity map by
Theorem 2.5.

(ii) = (i) If G has a linear proximity map, then ker P contains a closed
subspace W such that X = G ® W. Moreover, p(g +w) =g, g+w €
G ® W is a linear proximity map for G and so p is the projection of X
onto G along W by Theorem 2.5. Thus I —p: X — W is a projection.
Since ||(I —p)(z)|| = |lz—p(z)|| < ||z|| forall z € X, [ —p is contractive.
Hence G is 1-complemented. O

In [2], Deeb and Khalil proved that if G is 1-complemented in X and
(S,9, 1) is a finite measure space, then L (S, ) is 1-complemented
in Loo(S,X). Hence if G has a linear proximity map and (S,Q, u) is a
finite measure space, then L (S, G) has a linear proximity map.
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THEOREM 2.8. Let G be a closed subspace of X and 1 < p < oo.
Then the following are equivalent:

(i) G has a Lipschitz continuous proximity map;
(ii) Lp(S,G) has a Lipschitz continuous proximity map.

Proof. (i)=>(ii) Let 7 : X — G be a Lipschitz continuous proximity
map. Define &, : L,(S,X) — L,(S,G) by ®(f) == 7o f. Then &, is
a proximity map and

[#:(5) = #x(0)l = ([ I(S(5)) = m(g(o)Paus)

([ 176 - g)IPduts)?
= Af - gllp
for some A > 0.
(it)=(i) For z € X, define f, : S — X by
fa:(s) = “(Ako)%_l(IAko ® (L‘)(S)

for all s € S. Then f. € L,(S,X). Let P: L,(S,X) — Ly(S,G) be a
Lipschitz continuous proximity map. Define @ : X — G by
1 .
Q@) = —— [(P)(s)dus.
/L(Ako) v

Then (@ is a proximity map for G and

1
- QW) S ———IIPf - P
10(0) = QI <~ Pz = Pyl
1
< ———=AMfe = £l
#(Ak) 5 o
= Az — ||
for some A\ > 0. O
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LEMMA 2.9. (9] For every finite dimensional Chebyshev subspace G
of a normed linear space E, the metric projection Pg is continuous.

LEMMA 2.10. [9] Every closed linear subspaces G of a uniformly
convex Banach space E is a Chebyshev subspace where the metric pro-
jection Pg is continuous.

LEMMA 2.11. [10] If G is a Chebyshev set and approximatively com-
pact in a metric space E, then Pg is continuous.

For 1 < p < 0o, You and Guo [11] proved that if fo € L,(S,G) is
a best approximation of f € L,(S, X) in L,(S, G), then there exists a
null set N such that || f(s) — fo(s)|| < ||f(s)—g(s)| for all s € S\ N and
for all strongly measurable function ¢ : S — G. Thus || f(s) — fo(s)]| <
lf(s)—g| forall s € S\ N and g € G. Thus if G is Chebyshev in X and
f1 is another best approximation of f in L,(S,G), then fo(s) = fi(s)
for all s € S\ N. Hence fy = fi.

THEOREM 2.12. Let G be a closed subspace of X. Then for 1 <
p < o0, Ly(S,G) is Chebyshev in L,(S,X), if one of the following
assumptions holds:

(i) G is finite dimensional and Chebyshev.
(ii) X is uniformly convex.
(iii) G is Chebyshev and approximately compact.

Proof. This follows from Lemma 2.9, Lemma 2.10, Lemma 2.11, The-
orem 2.3 and the above remark. O

LEMMA 2.13. [9] If G is a proximinal hyperplane in a normed linear
space E, then GG has a linear proximity map.

THEOREM 2.14. Let G be a proximinal subspace of X. Then for
1 < p < oo, Lp(S,G) is proximinal in L,(S,X) and L,(S,G) has a
linear proximity map, if G is of codimension 1.

Proof. This follows from Lemma 2.13 and Theorem 2.4. ]
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THEOREM 2.15. [7] Let E be a normed linear space and G C E a
proximinal subspace. Compare the following two statements:

(i) G has a continuous proximity map s : E — G such that s(z) = 0
for each z € E with 0 € Pg(x).
(ii) Pg is lower semi-continuous.

We have (i) = (ii) and if G is complete, also (ii) =- (i).

COROLLARY 2.16. Suppose that G is a proximinal subspace of X.

If P is lower semi-continuous, then L (S, G) is a proximinal subspace
of Lp(5,X) (1 <p < o).

3. Proximity maps for C(S, H)

If S is a compact Hausdorff space and Y is a Banach space, C(S,Y)
denotes the Banach space of all continuous maps f from S into Y with
norm defined by

£l = sup [[£(s)]l-
s€S

THEOREM 3.1. [8] Let H be a closed subspace of the Banach space
Y. Let S be a compact Hausdorff space. For each f € C(S,Y),

d(f,C(S, H)) = Sggd(f(S),H)-

THEOREM 3.2. (8] If there is a continuous proximity map of Y onto
H, then C(S,Y) is proximinal in C(S,Y) and in fact it has a continuous
proximity map.

THEOREM 3.3. If C(S, H) is proximinal in C(S,Y) then H is prox-
iminal in Y. Moreover, if C(S,H) has a continuous proximity map,
then H has a continuous proximity map.

Proof. For y € Y, define f, : S — Y by fy(s) =y forall s € S.
Then f, € C(S,Y). By the assumption, there exists g € C(S, H) such
that || fy — 9|l = d(fy,C(S, H)). By Theorem 3.1,

d(f,,C(S, H)) = sup d(fy(s), H)
=d(y, H)
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and hence

ly — g(s)Il = I £y(s) — g(s)ll
< |fy — 9l
::d@hly)

for all s € S. Thus H is proximinal in Y.

Let A: C(S,Y) — C(S, H) be a continuous proximity map. Fix
any sop € S. Define @ : Y — H by Qy = (Afy)(s0). Then Q is a
proximity map. Suppose that y, — y in Y. Then Af, — Af, and

1Q(u) = QW = (Af,.)(s0) — (AF,)(s0)l
< ||Afy, — Ayl = 0.

Hence @ is continuous. O

THEOREM 3.4. If Py is lower semi-continuous, then C(S, H) is prox-
iminal in C(S,Y).

Proof. Let f € C(S,Y). Define ® : S — 25 by
®(s) = (Pu o f)(s),

ie, ®(s) = {h € H : ||f(s) — k|| = d(f(s),H)}. Take any so € S.
Since Py is lower semi-continuous, for every open set O in H such
that Py (f(so)) N O # B, there exists an open neighborhood V' of f(so)
such that Py(y) N O # 0 for all y € V. Since f is continuous at so,
there exists an open neighborhood U of sp such that f(U) C V. Thus
Py (f(s))NO # 0 for all s € U. Hence ® is lower semi-continuous.
Note that each ®(s) is a nonvoid, closed and convex subset of H. By

Michael Selection Theorem, ® has a continuous selection, say g. Thus
g € C(S, H). Moreover,

If — gll = sup || £(s) — g(s)|| = supd(f(s), H) = d(f,C(S, H)).
3€S seS

Hence C(S, H) is proximinal in C(S,Y). O
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REMARK. Theorem 3.4 follows from Theorem 2.15 and Theorem 3.2.
Moreover, C(S, H) has a continuous proximity map. But we proved it
directly.

COROLLARY 3.5. Let H be a proximinal subspace of a Banach space
Y. If one of the following holds:

(i) H is Chebyshev and approximately compact,
(ii) H is of codimension 1,

then C(S, H) is proximinal in C(S,Y).

Proof. This follows from Lemma 2.11, Lemma 2.13 and Theorem
3.2. O

4. Proximity maps for L(X,Y)
Let L(X,Y) be the space of all bounded linear operators from a
Banach space X into a Banach space Y.

THEOREM 4.1. Let G be a proximinal subspace of Y. If G has a
linear proximity map, say =, then L(X, G) has a linear proximity map.

Proof. Define P : L(X,Y) — L(X,G) by
P(A)=7o A.
Let 2 € X. Then w(A(z)) is a best approximation to A(z) in G. Hence
1A(z) = (P(A)@)I = | A(z) — m(Alz))]|
< lA@) - o)
forall # € G. So

|A(z) = (P(A))(z)ll < [[A(z) — B(x)]|
for all B € L(X,G). Since x was arbitrary in X, |A—P(A)| < ||A-B)|
for all B € L(X,G). Thus P(A) is a best approximation of A in
L(X,G). Since P(aA+BB) = aP(A)+8P(B) forall A, B € L(X,Y)
and a, B € R, P is linear. ]

Deeb and Khalil [2] proved that if G is 1-complemented in Y (or
equivalently G has a linear proximity map), then L(X, G) is proximinal
in L(X,Y).
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COROLLARY 4.2. Let G be a proximinal subspace of Y and of codi-
mension 1. Then L(X,G) is proximinal in L(X,Y) and L(X,G) has a
linear proximity map.

Proof. This follows from Lemma 2.13 and Theorem 4.1. O
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