PROXIMITY MAPS FOR CERTAIN SPACES

MUN BAE LEE AND SUNG HO PARK

1. Introduction

Let K be a nonempty subset of a normed linear space X and let $x \in X$. An element k_0 in K satisfying

$$||x - k_0|| = d(x, K) := \inf_{k \in K} ||x - k||$$

is called a best approximation to x from K. For any $x \in X$, the set of all best approximations to x from K is denoted by

$$P_K(x) = \{k \in K : ||x - k|| = d(x, K)\}.$$

The set K is called proximinal (resp., Chebyshev) if for every $x \in X$, $P_K(x)$ is nonempty (resp., a singleton).

Let K be a proximinal subset of X. The set-valued map $P_K : X \longrightarrow 2^K$ thus defined is called the metric projection onto K and the kernel of the metric projection P_K is the set

$$\ker P_K := \{ x \in X : 0 \in P_K(x) \}$$
$$= \{ x \in X : ||x|| = d(x, K) \}.$$

A map $p: X \longrightarrow K$ which associates with each element of X one of its best approximation in K is called a proximity map.

Received November 5, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 41A65, 46B20.

Key words and phrases: best approximation, continuous (linear, Lipschitz continuous) proximity map, 1-complemented, uniformly convex.

This studies were supported in part by the Basic Research Institute Program, BSRI-96-1412, Moe, Korea.

In this paper, we are interested in proximity maps which are continuous, linear or Lipschitz continuous. In section 2, we extend a result of continuous proximity maps in $L_p(S,X)$ in [4] where X is a Banach space and (S,Ω,μ) is a σ -finite measure space and the existence of linear proximity maps and Lipschitz continuous maps are discussed. In section 3, we consider the space C(S,Y) of all continuous maps f from a compact Hausdorff space S into a Banach space Y and prove that if C(S,H) has a continuous proximity map then H has a continuous proximity map. In section 4, we discuss some results on the proximinality in L(X,Y).

2. Proximity maps for $L_p(S,G)$

Let X be a Banach space, G a closed subspace of X and (S, Ω, μ) be a σ -finite measure space.

DEFINITION 2.1. Let (M,d) be a metric space. A Borel measurable function from S to M is called *strongly measurable* if it is the pointwise limit of a sequence of simple Borel measurable functions from S to M.

For $1 \leq p < \infty$, $L_p(S,X)$ is the Banach space consisting of (equivalence classes of) strongly measurable functions $f: S \longrightarrow X$ such that $\int \|f(s)\|^p d\mu(s)$ is finite. For $p = \infty$, $L_\infty(S,X)$ is the Banach space of essentially bounded strongly measurable functions $f: S \longrightarrow X$. For $F \in L_p(S,X)$,

$$\|f\|_p=ig(\int \|f(s)\|^p d\mu(s)ig)^{rac{1}{p}}\quad 1\leq p<\infty,$$

and

$$||f||_{\infty} = \operatorname{ess sup}_{s \in S} ||f(s)||.$$

For $A \in \Omega$ and a strongly measurable function $f: S \to X$, we write I_A for the characteristic function of A and $I_A \otimes f$ denoted the function $F(s) = I_A(s)f(s)$. In particular, for $A \in \Omega$ and $x \in X$, $(I_A \otimes x)(s) = I_A(s)x$.

THEOREM 2.2. [11] Let 1 . Then the following are equivalent:

(i) $L_p(S,G)$ is proximinal in $L_p(S,X)$;

(ii) $L_1(S,G)$ is proximinal in $L_1(S,X)$.

Theroem 2.3. Let G be a closed subspace of X and $1 \leq p < \infty$. Then

- (i) If G has a continuous proximity map, then $L_p(S,G)$ is proximinal.
- (ii) If $L_p(S,G)$ is proximinal in $L_p(S,X)$, then G is proximinal in X. Moreover, if $L_p(S,G)$ has a continuous proximity map, then G has a continuous proximity map.

Proof. (i) Let $\pi: X \longrightarrow G$ be a continuous proximity map. Let $\mathcal{S}(X), \mathcal{S}(G)$ and $\mathcal{S}(\ker P_G)$ be the class of simple integrable functions with values in X, G and $\ker P_G$, respectively. For $u = \sum_{i=1}^n I_{E_i} \otimes x_i \in \mathcal{S}(X)$ $(E_i \cap E_j = \emptyset)$ if $i \neq j$, let

$$v = \sum_{i=1}^{n} I_{E_i} \otimes y_i$$
 and $w = \sum_{i=1}^{n} I_{E_i} \otimes w_i$

where $y_i = \pi(x_i) \in P_G(x_i)$ and $w_i = x_i - y_i$. Then $v \in \mathcal{S}(G)$ and $w \in \mathcal{S}(\ker P_G)$. Then one can easily obtain that

(*)
$$v \in P_{L_p(S,G)}(u)$$
, $w \in L_p(S, \ker P_G)$ and $u = v + w$.

Let $f \in L_p(S,X)$. Then there exists a sequence $\{f_n\}$ of simple integrable functions in $L_p(S,X)$ such that $\|f_n(s)-f(s)\| \to 0$. Then, by (*), $f_n = g_n + h_n$ for some $g_n \in P_{L_p(S,G)}(f_n)$ and $h_n \in L_p(S,\ker P_G)$ (g_n and h_n simple integrable). Define $g: X \to G$ by $g(s) = \pi(f(s))$. Since π is continuous and $\pi(f_n(s)) = g_n(s)$, $g_n(s) = \pi(f_n(s)) \to \pi(f(s)) = g(s)$. Hence g is strongly measurable. Since for any $s \in S$, g(s) is a best approximation of f(s), it follows that $g \in P_{L_p(S,G)}(f)$.

(ii) Since (S, Ω, μ) is σ -finite, we can assume $S = \bigcup_{n \in N} A_n$, $A_n \in \Omega$ such that $A_n \subset A_{n+1}$ and $\mu(A_n) < \infty$ for each $n \in N$. Then there must be $k_0 \in N$ such that $0 < \mu(A_{k_0}) < \infty$. Let $x \in X$. Define $f_x : S \to X$ by

$$f_x(s) = \mu(A_{k_0})^{\frac{1}{p}-1}(I_{A_{k_0}} \otimes x)(s)$$

for all $s \in S$.

Then $f_x \in L_p(S, X)$. By the assumption, there exists $f_0 \in L_p(S, G)$ such that $||f_x - f_0||_p = d(f_x, L_p(S, G))$. So

$$\begin{split} \|f_{x} - f_{0}\|_{p} &\leq \|f_{x} - \mu(A_{k_{0}})^{\frac{1}{p} - 1} I_{A_{k_{0}}} \otimes g\|_{p} \\ &= \mu(A_{k_{0}})^{\frac{1}{p} - 1} \|I_{A_{k_{0}}} \otimes x - I_{A_{k_{0}}} \otimes g\|_{p} \\ &= \mu(A_{k_{0}})^{\frac{1}{p} - 1} \left(\int_{A_{k_{0}}} \|x - g\|^{p} d\mu(s) \right)^{\frac{1}{p}} \\ &= \mu(A_{k_{0}})^{\frac{2}{p} - 1} \|x - g\| \end{split}$$

for all $g \in G$. Since $||f_x(s) - f_0(s)|| \le ||f_x(s) - h(s)||$ a.e. for any strongly measurable function $h: S \to G$, $f_0 = I_{A_{k_0}} \otimes f_0$ [11]. Put $x_0 = \int f_0(s) d\mu(s)$. Then

$$\begin{aligned} \|x - \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} x_0 \| &= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \|\mu(A_{k_0})^{\frac{1}{p}} x - x_0 \| \\ &= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \|\int (f_x(s) - f_0(s)) d\mu(s) \| \\ &\leq \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int \|f_x(s) - f_0(s)\| d\mu(s) \\ &\leq \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \left(\int \|f_x(s) - f_0(s)\|^p d\mu(s)\right)^{\frac{1}{p}} \mu(A_{k_0})^{1 - \frac{1}{p}} \\ &\leq \|x - q\| \end{aligned}$$

for all $g \in G$. Hence $\frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} x_0$ is a best approximation of x in G.

Let $P: L_p(S,X) \longrightarrow L_p(S,G)$ be a continuous proximity map. Define $Q: X \longrightarrow G$ by

$$Q(x)=rac{1}{\mu(A_{k_0})^{rac{1}{p}}}\int (Pf_x)(s)d\mu(s).$$

Then Q is a proximity map for G. Now, let $x_n \to x$ in X. Then

$$\begin{split} \|f_{x_n} - f_x\|_p &= \|\mu(A_{k_0})^{\frac{1}{p} - 1} I_{A_{k_0}} \otimes x_n - \mu(A_{k_0})^{\frac{1}{p} - 1} I_{A_{k_0}} \otimes x\|_p \\ &= \mu(A_{k_0})^{\frac{1}{p} - 1} \Big(\int_{A_{k_0}} \|x_n - x\|^p d\mu(s) \Big)^{\frac{1}{p}} \\ &= \mu(A_{k_0})^{\frac{2}{p} - 1} \|x_n - x\| \to 0. \end{split}$$

Since P is continuous, we have $Pf_{x_n} \to Pf_x$ in $L_p(S,X)$. Since

$$\begin{split} \|Qx_n - Qx\| &= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \|\int ((Pf_{x_n})(s) - (Pf_x)(s)) d\mu(s)\| \\ &\leq \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} (\int \|(Pf_{x_n})(s) - (Pf_x)(s)\|^p d\mu(s))^{\frac{1}{p}} \mu(A_{k_0})^{1 - \frac{1}{p}} \\ &= \frac{1}{\mu(A_{k_0})^{\frac{2}{p} - 1}} \|Pf_{x_n} - Pf_x\|_p \to 0, \end{split}$$

Q is continuous.

REMARK.

(i) When (S, Ω, μ) is a finite measure space, the above theorem is just Theorem 2.1 of [4].

(ii) In [11], You and Guo proved that if $L_1(S,G)$ is proximinal in $L_1(S,X)$, then G is proximinal in X. Thus the first part of Theorem 2.3 (ii) can be proved by Theorem 2.2 but we proved it directly.

THEOREM 2.4. Let G be a closed subspace of X and $1 \le p < \infty$. Then the following are equivalent:

- (i) G has a linear proximity map;
- (ii) $L_p(S,G)$ has a linear proximity map.

Proof. (i) \Rightarrow (ii) Let π be a linear proximity map of X onto G. Define $\Phi_{\pi}: L_p(S,X) \to L_p(S,G)$ by $\Phi_{\pi}(f) = \pi \circ f$. Then Φ_{π} is a proximity map for $L_p(S,G)$. Take any $f_1, f_2 \in L_p(S,X)$ and $\alpha \in \mathbb{R}$. Then

$$(\Phi_{\pi}(\alpha f_1))(s) = (\pi \circ \alpha f_1)(s) = \pi(\alpha f_1(s))$$

= $\alpha \pi(f_1(s)) = \alpha(\Phi_{\pi}(f_1))(s)$

for all $s \in S$ and

$$(\Phi_{\pi}(f_1 + f_2))(s) = (\pi \circ (f_1 + f_2))(s) = \pi(f_1(s) + f_2(s))$$

= $\pi(f_1(s)) + \pi(f_2(s)) = (\Phi_{\pi}(f_1))(s) + (\Phi_{\pi}(f_2))(s)$

for all $s \in S$. Hence $L_p(S, G)$ has a linear proximity map.

(ii) \Rightarrow (i) For $x \in X$, define $f_x : S \to X$ by

$$f_x(s) = \mu(A_{k_0})^{\frac{1}{p}-1}(I_{A_{k_0}} \otimes x)(s)$$

for all $s \in S$. Then $f_x \in L_p(S, X)$. Let $P: L_p(S, X) \longrightarrow L_p(S, G)$ be a linear proximity map. Define $Q: X \longrightarrow G$ by

$$Q(x) = \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (Pf_x)(s) d\mu(s).$$

Then Q is a proximity map for G. Note that $f_{x+y} = f_x + f_y$ and $f_{\alpha x} = \alpha f_x$ for all $x, y \in X$ and $\alpha \in \mathbb{R}$. Thus for every $x, y \in X$ and $\alpha \in \mathbb{R}$,

$$Q(x+y) = \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (Pf_{x+y})(s) d\mu(s)$$

$$= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (P(f_x + f_y))(s) d\mu(s)$$

$$= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (Pf_x)(s) d\mu(s) + \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (Pf_y)(s) d\mu(s)$$

$$= Q(x) + Q(y)$$

and

$$\begin{split} Q(\alpha x) &= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (Pf_{\alpha x})(s) d\mu(s) \\ &= \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int \alpha(Pf_x)(s) d\mu(s) \\ &= \alpha Q(x). \end{split}$$

Hence Q is linear.

Proximity maps for certain spaces

THEOREM 2.5. [3] Let G be a proximinal subspace of X. Then the following are equivalent:

(i) G has a linear proximity map;

by

(ii) ker P_G contains a closed subspace W such that $X = G \oplus W$. Moreover, if (ii) holds, then a linear proximity map for G can be defined

$$p(q+w) = q, \quad q+w \in G \oplus W.$$

DEFINITION 2.6. [2] A subspace G of a Banach space X is called 1-complemented in X if there is a closed subspace W of X such that $X = G \oplus W$ and the projection $P: X \to W$ is a contractive projection.

In [2], Deeb and Khalil proved that if G is 1-complemented in X, then G is proximinal in X.

THEOREM 2.7. Let G be a subspace of a Banach space X. Then following are equivalent:

- (i) G is 1-complemented in X;
- (ii) G is proximinal in X and has a linear proximity map.
- *Proof.* (i) \Rightarrow (ii) Let $X = G \oplus W$ and $P : X \to W$ be a contractive projection. Let $w \in W$. Then for any $g \in G$, $||P(w-g)|| = ||w|| \le ||w-g||$. Thus $W \subset \ker P_G$. Hence G has a linear proximity map by Theorem 2.5.
- (ii) \Rightarrow (i) If G has a linear proximity map, then $\ker P_G$ contains a closed subspace W such that $X = G \oplus W$. Moreover, p(g+w) = g, $g+w \in G \oplus W$ is a linear proximity map for G and so p is the projection of X onto G along W by Theorem 2.5. Thus $I-p:X \to W$ is a projection. Since $\|(I-p)(x)\| = \|x-p(x)\| \le \|x\|$ for all $x \in X$, I-p is contractive. Hence G is 1-complemented.
- In [2], Deeb and Khalil proved that if G is 1-complemented in X and (S,Ω,μ) is a finite measure space, then $L_{\infty}(S,G)$ is 1-complemented in $L_{\infty}(S,X)$. Hence if G has a linear proximity map and (S,Ω,μ) is a finite measure space, then $L_{\infty}(S,G)$ has a linear proximity map.

Mun Bae Lee and Sung Ho Park

THEOREM 2.8. Let G be a closed subspace of X and $1 \le p < \infty$. Then the following are equivalent:

- (i) G has a Lipschitz continuous proximity map;
- (ii) $L_p(S,G)$ has a Lipschitz continuous proximity map.

Proof. (i) \Rightarrow (ii) Let $\pi: X \longrightarrow G$ be a Lipschitz continuous proximity map. Define $\Phi_{\pi}: L_p(S,X) \to L_p(S,G)$ by $\Phi_{\pi}(f) = \pi \circ f$. Then Φ_{π} is a proximity map and

$$\begin{split} \|\Phi_{\pi}(f) - \Phi_{\pi}(g)\|_{p} &= \left(\int \|\pi(f(s)) - \pi(g(s))\|^{p} d\mu(s)\right)^{\frac{1}{p}} \\ &\leq \lambda \left(\int \|f(s) - g(s)\|^{p} d\mu(s)\right)^{\frac{1}{p}} \\ &= \lambda \|f - g\|_{p} \end{split}$$

for some $\lambda > 0$.

(ii) \Rightarrow (i) For $x \in X$, define $f_x : S \to X$ by

$$f_x(s) = \mu(A_{k_0})^{\frac{1}{p}-1}(I_{A_{k_0}} \otimes x)(s)$$

for all $s \in S$. Then $f_x \in L_p(S, X)$. Let $P: L_p(S, X) \longrightarrow L_p(S, G)$ be a Lipschitz continuous proximity map. Define $Q: X \longrightarrow G$ by

$$Q(x) = \frac{1}{\mu(A_{k_0})^{\frac{1}{p}}} \int (Pf_x)(s) d\mu(s).$$

Then Q is a proximity map for G and

$$||Q(x) - Q(y)|| \le \frac{1}{\mu(A_{k_0})^{\frac{2}{p} - 1}} ||Pf_x - Pf_y||_p$$

$$\le \frac{1}{\mu(A_{k_0})^{\frac{2}{p} - 1}} \lambda ||f_x - f_y||_p$$

$$= \lambda ||x - y||$$

for some $\lambda > 0$.

Proximity maps for certain spaces

- LEMMA 2.9. [9] For every finite dimensional Chebyshev subspace G of a normed linear space E, the metric projection P_G is continuous.
- LEMMA 2.10. [9] Every closed linear subspaces G of a uniformly convex Banach space E is a Chebyshev subspace where the metric projection P_G is continuous.
- LEMMA 2.11. [10] If G is a Chebyshev set and approximatively compact in a metric space E, then P_G is continuous.
- For $1 \leq p \leq \infty$, You and Guo [11] proved that if $f_0 \in L_p(S,G)$ is a best approximation of $f \in L_p(S,X)$ in $L_p(S,G)$, then there exists a null set N such that $||f(s)-f_0(s)|| \leq ||f(s)-q(s)||$ for all $s \in S \setminus N$ and for all strongly measurable function $g: S \to G$. Thus $||f(s)-f_0(s)|| \leq ||f(s)-g||$ for all $s \in S \setminus N$ and $g \in G$. Thus if G is Chebyshev in X and f_1 is another best approximation of f in $L_p(S,G)$, then $f_0(s)=f_1(s)$ for all $s \in S \setminus N$. Hence $f_0=f_1$.

THEOREM 2.12. Let G be a closed subspace of X. Then for $1 \le p < \infty$, $L_p(S,G)$ is Chebyshev in $L_p(S,X)$, if one of the following assumptions holds:

- (i) G is finite dimensional and Chebyshev.
- (ii) X is uniformly convex.
- (iii) G is Chebyshev and approximately compact.

Proof. This follows from Lemma 2.9, Lemma 2.10, Lemma 2.11, Theorem 2.3 and the above remark. \Box

LEMMA 2.13. [9] If G is a proximinal hyperplane in a normed linear space E, then G has a linear proximity map.

THEOREM 2.14. Let G be a proximinal subspace of X. Then for $1 \leq p < \infty$, $L_p(S,G)$ is proximinal in $L_p(S,X)$ and $L_p(S,G)$ has a linear proximity map, if G is of codimension 1.

Proof. This follows from Lemma 2.13 and Theorem 2.4. \Box

THEOREM 2.15. [7] Let E be a normed linear space and $G \subset E$ a proximinal subspace. Compare the following two statements:

- (i) G has a continuous proximity map $s: E \to G$ such that s(x) = 0 for each $x \in E$ with $0 \in P_G(x)$.
- (ii) P_G is lower semi-continuous.

We have (i) \Rightarrow (ii) and if G is complete, also (ii) \Rightarrow (i).

COROLLARY 2.16. Suppose that G is a proximinal subspace of X. If P_G is lower semi-continuous, then $L_p(S,G)$ is a proximinal subspace of $L_p(S,X)$ $(1 \le p < \infty)$.

3. Proximity maps for C(S, H)

If S is a compact Hausdorff space and Y is a Banach space, C(S, Y) denotes the Banach space of all continuous maps f from S into Y with norm defined by

$$||f|| = \sup_{s \in S} ||f(s)||.$$

THEOREM 3.1. [8] Let H be a closed subspace of the Banach space Y. Let S be a compact Hausdorff space. For each $f \in C(S,Y)$,

$$d(f, C(S, H)) = \sup_{s \in S} d(f(s), H).$$

THEOREM 3.2. [8] If there is a continuous proximity map of Y onto H, then C(S,Y) is proximinal in C(S,Y) and in fact it has a continuous proximity map.

THEOREM 3.3. If C(S, H) is proximinal in C(S, Y) then H is proximinal in Y. Moreover, if C(S, H) has a continuous proximity map, then H has a continuous proximity map.

Proof. For $y \in Y$, define $f_y : S \longrightarrow Y$ by $f_y(s) = y$ for all $s \in S$. Then $f_y \in C(S,Y)$. By the assumption, there exists $g \in C(S,H)$ such that $||f_y - g|| = d(f_y, C(S,H))$. By Theorem 3.1,

$$d(f_y, C(S, H)) = \sup_{s \in S} d(f_y(s), H)$$
$$= d(y, H)$$

and hence

$$\|y - g(s)\| = \|f_y(s) - g(s)\|$$

 $\leq \|f_y - g\|$
 $= d(y, H)$

for all $s \in S$. Thus H is proximinal in Y.

Let $A: C(S,Y) \longrightarrow C(S,H)$ be a continuous proximity map. Fix any $s_0 \in S$. Define $Q: Y \longrightarrow H$ by $Qy = (Af_y)(s_0)$. Then Q is a proximity map. Suppose that $y_n \to y$ in Y. Then $Af_{y_n} \to Af_y$ and

$$||Q(y_n) - Q(y)|| = ||(Af_{y_n})(s_0) - (Af_y)(s_0)||$$

$$< ||Af_{y_n} - Af_y|| \to 0.$$

Hence Q is continuous.

THEOREM 3.4. If P_H is lower semi-continuous, then C(S, H) is proximinal in C(S, Y).

Proof. Let $f \in C(S,Y)$. Define $\Phi: S \longrightarrow 2^H$ by

$$\Phi(s) = (P_H \circ f)(s),$$

i.e., $\Phi(s) = \{h \in H : \|f(s) - h\| = d(f(s), H)\}$. Take any $s_0 \in S$. Since P_H is lower semi-continuous, for every open set O in H such that $P_H(f(s_0)) \cap O \neq \emptyset$, there exists an open neighborhood V of $f(s_0)$ such that $P_H(y) \cap O \neq \emptyset$ for all $y \in V$. Since f is continuous at s_0 , there exists an open neighborhood U of s_0 such that $f(U) \subset V$. Thus $P_H(f(s)) \cap O \neq \emptyset$ for all $s \in U$. Hence Φ is lower semi-continuous.

Note that each $\Phi(s)$ is a nonvoid, closed and convex subset of H. By Michael Selection Theorem, Φ has a continuous selection, say g. Thus $g \in C(S, H)$. Moreover,

$$||f - g|| = \sup_{s \in S} ||f(s) - g(s)|| = \sup_{s \in S} d(f(s), H) = d(f, C(S, H)).$$

Hence C(S, H) is proximinal in C(S, Y).

REMARK. Theorem 3.4 follows from Theorem 2.15 and Theorem 3.2. Moreover, C(S, H) has a continuous proximity map. But we proved it directly.

COROLLARY 3.5. Let H be a proximinal subspace of a Banach space Y. If one of the following holds:

- (i) H is Chebyshev and approximately compact,
- (ii) H is of codimension 1,

then C(S, H) is proximinal in C(S, Y).

Proof. This follows from Lemma 2.11, Lemma 2.13 and Theorem 3.2. $\hfill\Box$

4. Proximity maps for L(X,Y)

Let L(X,Y) be the space of all bounded linear operators from a Banach space X into a Banach space Y.

THEOREM 4.1. Let G be a proximinal subspace of Y. If G has a linear proximity map, say π , then L(X,G) has a linear proximity map.

Proof. Define
$$P: L(X,Y) \to L(X,G)$$
 by

$$P(A) = \pi \circ A$$
.

Let $x \in X$. Then $\pi(A(x))$ is a best approximation to A(x) in G. Hence

$$||A(x) - (P(A))(x)|| = ||A(x) - \pi(A(x))||$$

$$\leq ||A(x) - \theta||$$

for all $\theta \in G$. So

$$||A(x) - (P(A))(x)|| \le ||A(x) - B(x)||$$

for all $B \in L(X,G)$. Since x was arbitrary in X, $||A-P(A)|| \le ||A-B||$ for all $B \in L(X,G)$. Thus P(A) is a best approximation of A in L(X,G). Since $P(\alpha A + \beta B) = \alpha P(A) + \beta P(B)$ for all $A, B \in L(X,Y)$ and $\alpha, \beta \in \mathbb{R}$, P is linear.

Deeb and Khalil [2] proved that if G is 1-complemented in Y (or equivalently G has a linear proximity map), then L(X,G) is proximinal in L(X,Y).

Proximity maps for certain spaces

COROLLARY 4.2. Let G be a proximinal subspace of Y and of codimension 1. Then L(X,G) is proximinal in L(X,Y) and L(X,G) has a linear proximity map.

Proof. This follows from Lemma 2.13 and Theorem 4.1. \Box

References

- [1] D. L. Cohn, Measure theory, Birkhaüser (1980).
- [2] W. Deeb and R. Khalil, Best approximation in L(X, Y), Math. Proc. Camb. Phil. Soc. 104 (1988), 527-531.
- [3] F. Deutsch, Linear selections for the metric projection, J. Funct. Anal. 49 (1982), 269-292.
- [4] D. Hussein and R. Khalil, Best approximation in tensor product spaces, Soochow J. Math. 18 (1992), 397-407.
- [5] R. Khalil, Best approximation in $L^p(I,X)$, Math. Proc. Camb. Phil. Soc. 94 (1983), 277-279.
- [6] R. Khalil and W. Deeb, Best approximation in $L^p(\mu, X)$ II, J. Approx. Theory **59** (1989), 296-299.
- [7] H. Krüger, A remark on the lower semi-continuity of the set-valued metric projection, J. Approx. Theory 28 (1980), 83-86.
- [8] W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces, Lect. Notes in Math. Vol. 1169, Springer-Verlag, New York/Berlin, 1985.
- [9] I. Singer, The Theory of best approximation and functional analysis, Society for Industrial and Appl. Math., Philadelphia, 1974.
- [10] ______, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York, 1970.
- [11] You Zhao-Yong and Guo Tie-Xin, Point-wise best approximation in the space of strongly measurable functions with applications to best approximation in $L^p(\mu, X)$, J. Approx. Theory 78 (1994), 314-320.

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, KOREA