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BOUNDED CONVERGENCE THEOREMS

Piotr Niemiec

Abstract. There are presented certain results on extending continuous
linear operators defined on spaces of E-valued continuous functions (de-
fined on a compact Hausdorff space X) to linear operators defined on
spaces of E-valued measurable functions in a way such that uniformly
bounded sequences of functions that converge pointwise in the weak (or
norm) topology of E are sent to sequences that converge in the weak,
norm or weak* topology of the target space. As an application, a new
description of uniform closures of convex subsets of C(X,E) is given.
Also new and strong results on integral representations of continuous lin-
ear operators defined on C(X,E) are presented. A new classes of vector
measures are introduced and various bounded convergence theorems for
them are proved.

1. Introduction

Lebesgue’s dominated convergence theorem (for nonnegative measures) is a
fundamental as well as powerful tool which finds applications in many math-
ematical branches. (In this paper all measures are meant to be countably
additive.) Although nonnegative measures were naturally generalised to vector-
valued set functions (usually called vector measures) many years ago (see, for
example, [5], [6] or Chapter IV in [7]) and the above result waited many gener-
alisations, one of the disadvantages of vector integrals (of vector-valued func-
tions with respect to vector integrals) is the difficulty in verifying that a specific
function is integrable. For instance, if the total variation of a vector measure
is infinite, not every bounded measurable function with separable image is in-
tegrable, in the opposite to the scalar case (since every scalar-valued measure
automatically has finite variation). This causes that the concepts of integrating
vector-valued functions with respect to vector measures (proposed by Bartle
[1], Dinculeanu [6], Goodrich [9, 10], Lewis [12], Tucker and Wayment [19],
Smith and Tucker [17] and others) is not as popular as the classical theory of
measure and integration (and the theory of integrating vector-valued functions
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with respect to nonnegative measures or scalar-valued functions with respect to
vector measures; see, for example, [5]). In this paper we introduce a new class
of vector measures with respect to which all bounded measurable functions with
separable images are integrable and for which (strong) bounded convergence
theorem holds (which may be seen as a counterpart of the Lebesgue dominated
convergence theorem). Our approach is based on results on extending continu-
ous linear operators (such as stated in the abstract). To formulate the main of
them, let us first introduce necessary definitions. Everywhere below X and Ω
are, respectively, a compact and a locally compact Hausdorff space and E and
F are Banach spaces.

Definition 1.1. For a nonempty set Z, let ℓ∞(Z,E) stand for the Banach
space of all E-valued bounded functions on Z (equipped with the sup-norm
induced by the norm of E). For every set A ⊂ ℓ∞(Z,E), the space

[

A
]

bwc
is

defined as the smallest set among all B ⊂ ℓ∞(Z,E) such that:

(M0) A ⊂ B;
(M1) whenever fn ∈ B are uniformly bounded and converge pointwise to f ∈

ℓ∞(Z,E) in the weak topology of E, then f ∈ B.

It is an easy exercise that
[

V
]

bwc
is a linear subspace of ℓ∞(Z,E) provided V

is so.
By C(X,E) (C0(Ω, E)) we denote the subspace of ℓ∞(X,E) (resp. of

ℓ∞(Ω, E)) consisting of all continuous functions from X into E (resp. from

Ω into E that vanish at infinity). For simplicity, we put ℓK∞
def
= ℓ∞(N,K)

(where N
def
= {1, 2, . . .}).

Our main result on extending continuous linear operators reads as follows.

Theorem 1.2. Let V be a linear subspace of C(X,E). Every continuous linear

operator T : V → F ∗ is uniquely extendable to a linear operator T̄ :
[

V
]

bwc
→

F ∗ such that:

(BC*) whenever fn ∈
[

V
]

bwc
are uniformly bounded and converge pointwise

to f ∈
[

V
]

bwc
in the weak topology of E, then T̄ fn converge to T̄ f in

the weak* topology of F ∗.

Moreover, T̄ is continuous and ‖T̄‖ = ‖T ‖.

In the above notation, “BC” is the abbreviation of bounded convergence and
“*” is to emphasize that the final convergence is in the weak* topology. In the
sequel, we shall continue this concept.

It is a matter of taste to think of integrals as derived from measures (a
typical approach in measure theory) or conversely (for example, starting from
Riesz’ characterisation theorem or from the Daniell theory of integrals; see [2] or
Chapter XIII in [13]). In this paper we follow the latter approach, generalising
the classical Riesz characterisation theorem in a new way, which led us to the
introduction of a new class of vector measures:
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Definition 1.3. For Tn ∈ L (E,F ) (where L (E,F ) stands for the Banach
space of all continuous linear operators from E into F ), the series

∑∞
n=1 Tn is

said to be independently convergent if the series

(1.1)

∞
∑

n=1

Tnxn

is convergent in the norm topology of F for every bounded sequence of elements
xn of E. (If this happens, the series (1.1) is unconditionally convergent.)

A set function µ : M → L (E,F ) (where M is a σ-algebra of a set Z) is
called an i-measure if µ(

⋃∞
n=1An)x =

∑∞
n=1 µ(An)x (for each x ∈ E) and the

series
∑∞

n=1 µ(An) is independently convergent for any sequence of pairwise
disjoint sets An ∈ M. The total semivariation ‖µ‖Z ∈ [0,∞] of µ is given by

(1.2) ‖µ‖Z
def
= sup

{

∥

∥

N
∑

n=1

µ(An)xn
∥

∥ : N <∞, An ∈ M are pairwise disjoint,

xn ∈ E, ‖xn‖ 6 1
}

(compare §4 of Chapter I in [6]).

We shall prove in Lemma 4.3 that every independently convergent series
of elements of L (E,F ) is convergent in the norm topology of L (E,F ) (and
thus every i-measure is a vector measure with respect to the norm topology
of L (E,F )). What is more, it turns out that each i-measure has finite total
semivariation (see Theorem 4.4). This discovery enables us to define the vector
integral

∫

Z
f dµ of any E-valued bounded measurable function f with separa-

ble image with respect to a given L (E,F )-valued i-measure µ on a set Z. We

also show that the operator T̄ given by T̄ f
def
=

∫

Z
f dµ satisfies condition (BC*)

with the weak topology of F inserted in place of the weak* topology of F ∗,
or with the norm topologies on E and F (and

[

V
]

bwc
replaced by the space

of all functions f with the properties specified above). This is shown in The-
orems 4.11 and 4.12. These remarks may justify a conclusion that i-measures
are the best counterparts (in the operator-valued case) of finite nonnegative
(or scalar-valued) measures.

Taking into account the Riesz characterisation theorem, continuous linear
operators from Banach spaces of the form C(X,E) (into arbitrary Banach
spaces) may be called abstract vector integrals. There are a number of results
which justify such a terminology (see, for example, [9, 10], [17] or Theorem 9
in §5 of Chapter III in [6]). However, in most of them the final vector measure
is only finitely additive. In our characterisation (in a special case) the final
measure is an i-measure (and thus it is countably additive):

Theorem 1.4. Let F be a weakly sequentially complete Banach space or a

dual Banach space containing no isomorphic copy of ℓR∞ and let Ω be a locally



322 P. NIEMIEC

compact Hausdorff space. For every continuous linear operator T : C0(Ω, E) →
F there exists a unique regular Borel i-measure µ : B(Ω) → L (E,F ) such that

(1.3) Tf =

∫

Ω

f dµ (f ∈ C0(Ω, E)).

Conversely, if µ : B(Ω) → L (E,F ) is an arbitrary regular i-measure (and F
is an arbitrary Banach space), then (1.3) correctly defines a continuous linear

operator T : C0(Ω, E) → F such that ‖T ‖ = ‖µ‖Ω.

We also give an integral representation of continuous linear operators from
C0(Ω, E) which take values in arbitrary Banach spaces. This is done with the
help of so-called weak* i-measures, introduced and discussed in Section 6.

As a consequence of Theorem 1.4 and bounded convergence theorems for
i-measures, we obtain a new result on the description of the uniform closure of
a convex subset of C(X,E):

Theorem 1.5. In each of the three cases specified below, the norm closure

of a convex subset K of C0(Ω, E) coincides with the set of all functions f ∈

C0(Ω, E) such that f
∣

∣

L
∈
[

K
∣

∣

L

]

bwc
(where K

∣

∣

L

def
= {g

∣

∣

L
∈ C(L,E) : g ∈ K })

for any compact set L ⊂ Ω:

• Ω is compact; or
• K is bounded; or
• E is a C∗-algebra and K is a ∗-subalgebra of C0(Ω, E).

The above result seems to be a convenient tool. Recently we use some of its
variations to describe models for subhomogeneous C∗-algebras (which may be
seen as a solution of a long-standing problem); see [14].

The paper is organised as follows. Section 2 is devoted to the proof of
Theorem 1.2 and some of its generalisations. In Section 3 we introduce vari-

ationally sequentially complete Banach spaces (which all weakly sequentially
complete as well as all dual Banach spaces belong to), give a new characterisa-
tion of weakly sequentially complete Banach spaces and formulate a variation of
Theorem 1.2 for operators taking values in variationally sequentially complete
Banach spaces. The fourth part discusses in details i-measures and contains a
preliminary material to the proof of Theorem 1.4. Section 5 is devoted to weak*
i-measures. Section 6 discusses regular i-measures as well as regular weak* i-
measures. It contains a proof of Theorem 1.4 and its variations for operators
taking values in variationally sequentially complete Banach spaces containing
no isomorphic copy of ℓR∞ (see Theorem 6.6) and in dual Banach spaces (consult
Theorem 6.14) as well as totally arbitrary Banach spaces (see Corollary 6.15).
The last, seventh part is devoted to the proof of Theorem 1.5 and some of its
variations. We give there also an illustrative application and an example show-
ing that the boundedness condition in the second case of Theorem 1.5 cannot
be, in general, dropped.
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Notation and terminology

Throughout the whole paper, all topological spaces are assumed to be Haus-
dorff. X , Ω, and E and F are reserved to denote, respectively, a compact space,
a locally compact space and two Banach spaces over the field K of real or com-
plex numbers. The dual of a locally convex topological vector space (G, τ) is
denoted by (G, τ)∗ (or simply G∗ if it is known from the context with respect
to which topology on G the dual is taken) and is understood as the vector
space of all continuous linear functionals on (G, τ). A subset A of a topological
space Y is sequentially closed if A contains the limits of all convergent (in Y )
sequences whose entries belong to A. A is σ-compact if it is a countable union
of compact subsets of Y . Finally, B(Y ) stands for the σ-algebra of all Borel
sets in Y ; that is, B(Y ) is the smallest σ-algebra of subsets of Y that contains
all open sets.

All notations and terminologies introduced in Definitions 1.1 and 1.3 are
obligatory.

2. Extending linear operators

Definition 2.1. Let M be a σ-algebra on a set Z. A function f : Z → E is
said to be M-measurable if

• f(X) is a separable subspace of E; and
• f is weakly M-measurable; that is, for any ψ ∈ E∗, the function
ψ ◦ f : Z → K is M-measurable.

Thanks to a theorem of Pettis [15], f is M-measurable if and only if f(Z) is a
separable subspace of E and the inverse image of every Borel set in E under f
belongs to M.
MM(Z,E) is defined as the subspace of ℓ∞(Z,E) consisting of all bounded

M-measurable functions f : Z → E.
For a compact space X , let M(X) be the smallest σ-algebra on X that

contains all closed sets in X of type Gδ. M(X,E) stands for MM(X)(X,E).

It is worth noting here that, in general, not every open set in X belongs
to M(X). But if X is metrisable (or, more generally, perfectly normal), then
M(X) = B(X).

The next result is certainly known. For the reader’s convenience, we give its
proof.

Lemma 2.2.
[

C(X,E)
]

bwc
=M(X,E).

Proof. First of all, observe that M(X) is the smallest σ-algebra on X with
respect to which all K-valued continuous functions on X are measurable. It
is therefore an elementary exercise to check that the set B = M(X,E) satis-
fies conditions (M0)–(M1) for A = C(X,E). Consequently,

[

C(X,E)
]

bwc
⊂

M(X,E). Instead of proving the reverse inclusion, we shall show a little bit
more (which shall be used in further sections): that M(X,E) coincides with
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the smallest set
[

C(X,E)
]

bnc
among all B ⊂ ℓ∞(X,E) which include C(X,E)

and satisfy the condition:

(M1’) whenever fn ∈ B are uniformly bounded and converge pointwise to
f ∈ ℓ∞(X,E) in the norm topology of E, then f ∈ B.

To this end, for any A ⊂ X , denote by jA : X → {0, 1} the characteristic func-
tion of A. First we assume E = K. Observe that

[

C(X,K)
]

bnc
is a unital subal-

gebra of ℓ∞(X,K). This implies that N
def
=

{

A ∈ M(X) : jA ∈
[

C(X,K)
]

bnc

}

is a σ-algebra on X . So, to conclude that N = M(X), it suffices to show
that each closed set of type Gδ belongs to N. But this is immediate, since
for any such set K there are sequences U1 ⊃ U2 ⊃ · · · of open sets in X

and f1, f2, . . . : X → [0, 1] of continuous functions such that jK 6 fn 6 jUn

and K =
⋂∞
n=1 Un. Consequently, jK is the pointwise limit of the functions

fn and hence K ∈ N. This shows that N = M(X). Now, since every
scalar-valued bounded M(X)-measurable function is a uniform limit of lin-
ear combinations of characteristic functions of members of M(X), we get that
M(X,K) ⊂

[

C(X,K)
]

bnc
. We turn to the general case.

For simplicity, we shall call any function u : X → E such that u(X) is
countable (finite or not) and the inverse image of every point of E under u is
a member of M(X) semisimple. For any scalar-valued function f : X → K and
each vector x ∈ E, we use f(·)x to denote a function from X into E, computed

pointwise. Now fix e ∈ E and consider families F (e)
def
=

{

u ∈M(X,K) : u(·)e ∈
[

C(X,E)
]

bnc

}

and Me
def
= {B ∈ M(X) : jB ∈ F (e)}. Since C(X,K) ⊂ F (e), it

follows from the previous part of the proof that F (e) =M(X,K) and M(e) =
M(X). One easily deduces from these connections and (M1’) that

(⋆) any semisimple function u : X → E belongs to
[

C(X,E)
]

bnc
.

Now take any u ∈M(X,E). Since the range of u is a separable space and u is
weakly M(X)-measurable, one concludes that:

• the inverse image of any closed ball in E under u belongs to M(X);
• for any ε > 0, there exists a countable (finite or not) collection of
pairwise disjoint members of M(X) whose union coincides with X and
images under u are contained in closed ε-balls of E.

Now using the latter of the above properties, for each n > 0, construct a
semisimple function un : X → E whose uniform distance from u is less than 1/n.
So, u is a uniform limit of semisimple functions and hence u ∈

[

C(X,E)
]

bnc
,

by (⋆). �

Although the next lemma is very simple, it is crucial for our further purposes.

Lemma 2.3. Let Y be a compact space and U : E → C(Y,K) be a linear

isometric embedding. For each v ∈ ℓ∞(X,E) let Lv : X × Y → K be given

by (Lv)(x, y)
def
= U(v(x))(y). Then the assignment v 7→ Lv defines a linear

isometric embedding L of ℓ∞(X,E) into ℓ∞(X × Y,K) such that:
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(L1) L(C(X,E)) ⊂ C(X × Y,K);
(L2) if vn ∈ ℓ∞(X,E) are uniformly bounded and converge pointwise to v ∈

ℓ∞(X,E) in the weak topology of E, then Lvn are uniformly bounded as

well and converge pointwise to Lv;
(L3) for any set A ⊂ ℓ∞(X,E), L

([

A
]

bwc

)

⊂
[

L(A)
]

bwc
where the sets

[

A
]

bwc

and
[

L(A)
]

bwc
are computed in, respectively, ℓ∞(X,E) and ℓ∞(X×Y,K).

Proof. It is readily seen that L : ℓ∞(X,E) → ℓ∞(X × Y,K) is linear and iso-
metric. Point (L1) is a well-known topological result—consult, for example,
Theorems 3.4.7, 3.4.8 and 3.4.9 in [8]. (L2) follows from the facts that U is
continuous in the weak topologies of E and C(Y,K), and that the weak topol-
ogy of C(Y,K) is finer than the pointwise convergence topology. Finally, (L3)
is implied by (L2). �

Let us call a locally convex topological vector space G initial if its topology
coincides with the weak topology of G. Equivalently, G(, τ0) is initial if and
only if τ0 is the coarsest topology among all locally convex topologies τ on
G for which the sets (G, τ)∗ and (G, τ0)

∗ (considered here with no topology)
coincide. Important examples of such spaces are Banach spaces equipped with
the weak topologies as well as dual Banach spaces equipped with the weak*
topologies. Recall that G is sequentially complete if every Cauchy sequence in
G is convergent. The following result is a generalisation of Theorem 1.2:

Theorem 2.4. Let G be an initial sequentially complete locally convex topologi-

cal vector space and V be a linear subspace of C(X,E). Every continuous linear

operator T : V → G is uniquely extendable to a linear operator T̄ :
[

V
]

bwc
→ G

such that:

(BC’) whenever fn ∈
[

V
]

bwc
are uniformly bounded and converge pointwise

to f ∈
[

V
]

bwc
in the weak topology of E, then T̄ fn converge to T̄ f .

Moreover, T̄ is continuous.

Proof. It follows from (BC’) and the very definition of
[

V
]

bwc
that T̄ is unique.

To establish the existence of T̄ , first note that the initiality and sequential
completeness of G imply that:

(CC) if zn ∈ G are such that ψ(zn) converge (in K) for any ψ ∈ G∗, then zn
converge (in G).

Next, there is an isometric linear embedding U : E → C(Y,K) for a suitably
chosen compact space Y . Let L : ℓ∞(X,E) → ℓ∞(X × Y,K) be as specified in

Lemma 2.3. We put W
def
= L(V ) and define S : W → G by S

def
= T ◦ (L

∣

∣

V
)−1. It

is enough to show that there is a linear extension S̄ :
[

W
]

bwc
→ G of S (where

[

W
]

bwc
is computed in ℓ∞(X × Y,K)) such that:

(BC”) whenever fn ∈
[

W
]

bwc
are uniformly bounded and converge pointwise

to f ∈
[

W
]

bwc
, then S̄fn converge to S̄f ,
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because then T̄
def
= S̄◦L

∣

∣
[

V
]

bwc

is well defined (by condition (L3) of Lemma 2.3),

extends T and satisfies (BC’) (thanks to (L2)). For simplicity, everywhere
below α denotes an arbitrary countable ordinal. To establish the existence
of S̄, for any α, we define a space Wα by transfinite induction as follows:
W0 = W and for α > 0, Wα consists of all pointwise limits of uniformly
bounded sequences from

⋃

ξ<αWξ (convergent in the pointwise topology). It

is easy to check that each of Wα is a linear subspace of C(X × Y,K) and that
[

W
]

bwc
=

⋃

αWα. Since any sequence of members of
[

W
]

bwc
is contained

in Wα for some α, it suffices to show that there exists a transfinite sequence
Sα : Wα → G of linear operators such that:

(E1) S0 = S;
(E2) Sα extends Sξ provided ξ < α;
(E3) whenever fn ∈ Wα are uniformly bounded and converge pointwise to

f ∈Wα, then Sαfn converge to Sαf

(because then S̄ may simply be defined by S̄f
def
= Sαf where α is chosen so

that f ∈Wα). It follows from the Hahn-Banach and the Riesz characterisation
theorems that for any ψ ∈ G∗, there is a K-valued regular Borel measure µψ
on X × Y such that:

ψ(Sf) =

∫

X×Y

f dµψ (f ∈W ).

Define S0 as specified in (E1) and assume that for some α > 0, Sξ is defined
for any ξ < α in a way such that for each ψ ∈ G∗,

(2.1) ψ(Sξf) =

∫

X×Y

f dµψ (f ∈Wξ).

We shall define Sα so that (2.1) holds for ξ = α and then we shall check that
conditions (E2)–(E3) are satisfied. Let u ∈ Wα. There is a uniformly bounded
sequence un ∈ Wξn (with ξn < α) which converges pointwise to u. It then
follows from Lebesgue’s dominated convergence theorem and (2.1) that

(2.2) lim
n→∞

ψ(Sξnun) =

∫

X×Y

u dµψ

for each ψ ∈ G∗. So, we conclude from (CC) that Sξnun converge. We define
Sαu as the limit of the last mentioned sequence. It follows from (2.2) that
(2.1) is satisfied for ξ = α and f = u (and any ψ ∈ G∗). This implies that
the definition of Sαu is independent of the choice of the functions un. Finally,
(2.1) applied for all ξ 6 α shows that (E2) holds, and combined with Lebesgue’s
dominated convergence theorem gives (E3) (because G is initial).

To complete the proof, it remains to observe that the continuity of T̄ fol-
lows from (BC’) (since

[

V
]

bwc
is metrisable, it suffices to check the sequential

continuity). �
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Proof of Theorem 1.2. Taking into account Theorem 2.4, it is enough to verify
that F ∗ is initial and sequentially complete in the weak* topology, and that
the extension of T does not increase the norm. Both the above properties of
F ∗ are immediate. And to convince oneself that ‖T̄‖ = ‖T ‖, it suffices to
repeat the proof of Theorem 2.4 and check that ‖Sα‖ = ‖S‖ for each countable
ordinal α, which may simply be provided by choosing the measures µψ (for
ψ ∈ F = (F,weak*)∗) appearing in (2.1) so that the total variation |µψ|(X×Y )
of µψ does not exceed ‖S‖ · ‖ψ‖. �

As an immediate consequence of Theorem 1.2 and Lemma 2.2, we obtain
the following result, announced in the abstract.

Corollary 2.5. Every continuous linear operator T : C(X,E) → F ∗ is uniquely

extendable to a linear operator T̄ : M(X,E) → F ∗ satisfying condition (BC*)
of Theorem 1.2 with M(X,E) inserted in place of

[

V
]

bwc
. Moreover, T̄ is

continuous and ‖T̄‖ = ‖T ‖.

3. Variational sequential completeness

Recall that a Banach space is weakly sequentially complete (briefly, wsc) if
it is sequentially complete with respect to the weak topology. Each reflexive
Banach space is wsc and ℓ1 is an example of a nonreflexive wsc Banach space.
These two exclusive examples are, in a sense, exhaustive. Namely, by a cele-
brated result due to Rosenthal [16], every wsc Banach space is either reflexive
or contains an isomorphic copy of ℓ1. An interesting characterisation of wsc
Banach spaces is given below.

Proposition 3.1. For a Banach space F the following conditions are equiv-

alent:

(a) Every continuous linear operator T : V → F from a linear subspace V of

(some Banach space of the form) C(X,E) extends uniquely to a linear

operator T̄ :
[

V
]

bwc
→ F such that:

(BC) whenever fn ∈
[

V
]

bwc
are uniformly bounded and converge pointwise

to f ∈
[

V
]

bwc
in the weak topology of E, then T̄ fn converge to T̄ f in

the weak topology of F .

(Moreover, T̄ is continuous and ‖T̄‖ = ‖T ‖.)
(b) F is wsc.

Proof. One easily deduces from Theorem 2.4 that (a) is implied by (b). (The
additional claim of (a) may be shown as explained in the proof of Theorem 1.2.)
To see that the reverse implication also holds, take a sequence z1, z2, . . . ∈ F

which is Cauchy in the weak topology. Define X as the closed unit ball of F ∗

equipped with the weak* topology and put E
def
= K. Further, for each x ∈ F ,

we use ex : X → E to denote the evaluation map at x; that is, ex(ψ) = ψ(x).

Denote by F0 the linear span of all zn, put V
def
= {ez : z ∈ F0} ⊂ C(X,E) and
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define T : V → F by Tez
def
= z. It is readily seen that T is continuous (even

isometric) and linear. So, it follows from (a) that there is a linear extension
T̄ :

[

V
]

bwc
→ F of T which satisfies (BC). Since the sequence of all zn is Cauchy

in the weak topology of F , the formula u(ψ)
def
= limn→∞ ψ(zn) correctly defines

a function u : X → E. Notice that the functions ezn are uniformly bounded
and converge pointwise to u. Thus, u ∈

[

V
]

bwc
and, by (BC), zn = T̄ ezn

converge to T̄ z in the weak topology of F . �

Theorems 1.2 and 2.4 and Proposition 3.1 suggest distinguishing certain
Banach spaces, which we do below.

Definition 3.2. A Banach space F is said to be variationally sequentially

complete (briefly, vsc) if there is a set B ⊂ F ∗ such that:

(vsc1) there is a positive constant λ such that for any x ∈ F ,

1

λ
sup{|ψ(x)| : ψ ∈ B} 6 ‖x‖ 6 λ sup{|ψ(x)| : ψ ∈ B};

(vsc2) whenever zn ∈ F are uniformly bounded and ψ(zn) converge for each
ψ ∈ B, then there exists z ∈ F such that limn→∞ ψ(zn) = ψ(z) for all
ψ ∈ B.

It is worth noting that the point z appearing in (vsc2) is unique. For simplicity,
we shall denote it by B-limn→∞ zn.

More specifically, F is called α-vsc (where α > 1) if there exists B ⊂ F ∗

such that (vsc1)–(vsc2) hold with λ = α.

Basic examples of vsc spaces are wsc as well as dual Banach spaces. It is
also clear that a Banach space is vsc provided it is isomorphic to a vsc Banach
space.

It is an easy exercise to show that a Banach space is wsc if and only if it is
sequentially closed in the weak* topology of its second dual. A counterpart of
this characterisation for vsc Banach spaces is given below.

Proposition 3.3. A Banach space F is vsc if and only if it is isomorphic to a

linear subspace W of some dual Banach space H∗ such that W is sequentially

closed in the weak* topology of H∗.

Proof. First assume F is vsc and let B ⊂ F ∗ be such that (vsc1)–(vsc2) are

fulfilled. We put H
def
= ℓ1(B,K); that is, Z consists of all functions u : B → K

such that ‖u‖
def
=

∑

ψ∈B |u(ψ)| < ∞. Then H∗ = ℓ∞(B,K). Define Φ: F →

ℓ∞(B,K) by (Φf)(ψ) = ψ(f). It follows from (vsc1) that Φ is a well defined

topological embedding. We claim that W
def
= Φ(F ) is sequentially closed in

the weak* topology of ℓ∞(B,K). To see this, let zn ∈ F be such that Φ(zn)
converge to u ∈ ℓ∞(B,K) in the weak* topology. Then Φ(zn) are uniformly
bounded and, consequently, so are zn. Furthermore, ψ(zn) converge for any
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ψ ∈ B. So, (vsc2) implies that z
def
= B- limn→∞ zn well defines a vector in F

and u = Φ(z).
Conversely, assume F is isomorphic to W where W ⊂ H∗ is as specified

in the proposition. It suffices to check that W is vsc. For any x ∈ H , let

jx ∈ W ∗ be given by jx(ψ)
def
= ψ(x). Put B

def
= {jx : x ∈ H, ‖x‖ 6 1}. We

see that (vsc1) holds with λ = 1. Now assume ϕn ∈ W are such that ψ(ϕn)
converge for any ψ ∈ B. Then ϕn converge pointwise (on the whole H) to some
function ϕ : H → K. It now follows from the Uniform Boundedness Principle
that ϕ ∈ H∗ and, consequently (since W is sequentially closed), ϕ ∈ W . This
shows that (vsc2) holds and we are done. �

As a consequence, we obtain:

Proposition 3.4. Every continuous linear operator T : V → F from a linear

subspace V of (some space of the form) C(X,E) into a vsc Banach space F is

extendable to a continuous linear operator T̄ :
[

V
]

bwc
→ F .

Proof. Let Φ: F → W be an isomorphism where W is a linear subspace of a
dual Banach space H∗ that is sequentially closed in the weak* topology (see

Proposition 3.3). Put L
def
= Φ ◦ T : V →W ⊂ H∗. It follows from Theorem 1.2

that there exists a linear extension L̄ :
[

V
]

bwc
→ H∗ of L such that ‖L̄‖ = ‖L‖.

What is more, the proof of Theorem 2.4 shows that all values of L̄ belong to

W , since W is sequentially closed in H∗. Thus T̄
def
= Φ−1 ◦ L̄ well defines a

continuous linear extension of T we searched for. �

For V = C(X,E) (and under an additional assumption on F ), Proposi-
tion 3.4 shall be strengthened in Corollary 5.13.

Remark 3.5. The above proof shows that, under the notation of Proposition 3.4:

• every continuous linear operator T : V → F extends to a continuous
linear operator T̄ :

[

V
]

bwc
→ F such that ‖T̄‖ 6 λ2‖T ‖ provided F is

λ-vsc;
• a linear subspace of a dual Banach space which is sequentially closed
in the weak* topology is 1-vsc.

We shall use these observations in the sequel.

Proposition 3.4 combined with Remark 3.5 yields:

Corollary 3.6. Let Fsc be the smallest linear subspace of F ∗∗ that contains

F and is sequentially closed in the weak* topology of F ∗∗. Every continuous

linear operator T : V → F from a linear subspace V of (some space of the

form) C(X,E) is extendable to a continuous linear operator T̄ :
[

V
]

bwc
→ Fsc

such that ‖T̄‖ = ‖T ‖.

Example 3.7. Let V be a linear subspace of C(X,F ) where F is a reflexive
Banach space. Then

[

V
]

bwc
is a 1-vsc (in particular, M(X,F ) is a 1-vsc).
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Indeed, ℓ∞(X,F ) is the dual Banach space of

ℓ1(X,F
∗)

def
=

{

u : X → F ∗| (‖u‖
def
=)

∑

x∈X

‖u(x)‖ <∞
}

and a sequence of elements of ℓ∞(X,F ) converges in the weak* topology if and
only if it is uniformly bounded and converges (to the same limit) pointwise in
the weak topology of F (because F is reflexive). We conclude that

[

V
]

bwc
is

sequentially closed in the weak* topology of ℓ∞(X,F ). So, the assertion follows
from Remark 3.5.

The same argument proves that MM(Z,E) is 1-vsc provided E is reflexive
and M is a σ-algebra on Z.

In the last section we shall prove a counterpart of Theorem 1.4 for vsc Banach
spaces F which contain no isomorphic copy of ℓR∞ (see Theorem 6.6). It seems
to be interesting and helpful to know more about vsc Banach spaces. This will
be the subject of our further studies.

4. Strong results on vector integrals

As we mentioned in the introductory part, taking into account the Riesz
characterisation theorem, continuous linear operators from C(X,E) into arbi-
trary Banach spaces may be called (abstract) vector integrals. Such a termi-
nology may be justified, for example, by a theorem formulated below.

Theorem 4.1 (Theorem 9 in §5 of Chapter III in [6]). For every continuous

linear operator T : C(X,E) → F and a closed linear norming subspace W of

F ∗, there exists a finitely additive set function m : B(X) → L (E,W ∗) such

that

(4.1) Tf =

∫

X

f dµ (f ∈ C(X,E)).

For a proof and the definition of the integral appearing in (4.1), consult [6].
Other results in this fashion may be found, for example, in [9, 10] and [12].

The reader should notice that, under the notation of Theorem 4.1,W ∗ differs
from F , unless F is a dual Banach space. Theorem 1.4 shows that in the case
when F is wsc, the set function µ may always be taken so that it takes values in
L (E,F ). (More generally, it suffices that F is vsc and contains no isomorphic
copy of ℓR∞; see Theorem 6.6 in the last section.) L1([0, 1]) is an example of a
wsc Banach space which is isomorphic to no dual Banach space. To formulate
our first result on vector measures, we recall

Definition 4.2. Whenever M is a σ-algebra of subsets of some set, a set
function µ : M → L (E,F ) is said to be an operator measure if for any x ∈ E

and ψ ∈ F ∗, the set function M ∋ A 7→ ψ(µ(A)x) ∈ K is a scalar-valued
measure. According to the Orlicz-Pettis theorem (see, for example, Corollary 4
on page 22 in [5]), if µ is an operator-valued measure and An ∈ M are pairwise
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disjoint, then µ(
⋃∞
n=1An)x =

∑∞
n=1 µ(An)x (the convergence in the norm

topology) for each x ∈ E.
Similarly, a set function µ : M → F is said to be a vector measure if for any

ψ ∈ F ∗, the set function M ∋ A 7→ ψ(µ(A)) ∈ K is a scalar-valued measure.
Equivalently, µ is a vector measure if and only if µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An)

(the convergence in the norm topology) for any sequence of pairwise disjoint
sets An ∈ M.

Finally, a set function µ : M → F ∗ is said to be a weak* vector measure if the
set function M ∋ A 7→ (µ(A))(f) ∈ K is a (scalar-valued countably additive)
measure for any f ∈ F .

It is worth emphasizing here that a set function µ : M → L (E,F ) is an
operator measure provided it is a vector measure, but the reverse implication
may fail to hold.

The reader is referred to Definition 1.3 (in the introductory section) to recall
the notion of an i-measure. The next result shows that every such a set function
is a vector measure.

Lemma 4.3. A series
∑∞

n=1 Tn with summands in L (E,F ) is convergent

in the norm topology of L (E,F ) provided it is independently convergent. In

particular, every i-measure is a vector measure.

Proof. By the assumptions, for each n > 0, the formula Snx
def
=

∑∞
k=n Tkx

correctly defines a linear operator Sn : E → F . It follows from the Uni-
form Boundedness Principle that Sn ∈ L (E,F ). It remains to check that
limn→∞ ‖Sn‖ = 0. We assume, on the contrary, that ‖Sn‖ > ε for some ε > 0
and infinitely many n. We shall mimic the proof of Schur’s lemma (on weakly
convergent sequences in ℓ1). Let ν1 and x1 ∈ E be, respectively, a positive
integer and a unit vector such that ‖Sν1x1‖ > ε. It follows from our hypothesis

that there is ν2 > ν1 such that ‖
∑ν2−1
k=ν1

Tkx1‖ > ε and ‖Sν2‖ > ε. We continue

this procedure: if ν1 < · · · < νm are integers (where m > 1) and x1, . . . , xm−1

are unit vectors of E such that ‖Sνm‖ > ε and

(4.2)
∥

∥

∥

νj+1−1
∑

k=νj

Tkxj

∥

∥

∥
> ε

for each j ∈ {1, . . . ,m−1}, we may find an integer νm+1 > νm and a unit vector
xm ∈ E for which ‖Sνm+1

‖ > ε and (4.2) holds for j = m. In this way we obtain
a bounded sequence of vectors xn and an increasing sequence of integers νn such
that (4.2) holds for each j. But, if follows from the assumptions of the lemma

that the series
∑∞

n=1(
∑νn+1−1

k=νn
Tkxn) converges in the norm topology, which

contradicts (4.2).
The additional claim of the lemma simply follows. �

Another strong property of i-measures is established below.
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Theorem 4.4. Every i-measure has finite total semivariation.

Proof. Let µ : M → L (E,F ) be an i-measure defined on a σ-algebra M of
subsets of a set Z. Suppose, on the contrary, that ‖µ‖Z = ∞. For an arbitrary
set A ∈ M we may similarly define ‖µ‖A ∈ [0,∞] as the supremum of all

numbers of the form ‖
∑N
n=1 µ(An)xn‖ where N is finite, An ∈ M are pairwise

disjoint subsets of A and xn ∈ E have norms not exceeding 1 (compare (1.2)).
The set function M ∋ A 7→ ‖µ‖A ∈ [0,∞] is called the semivariation of µ
(see §4 of Chapter I in [6]) and known to have the following (easy to prove)
properties:

(SM1) ‖µ‖A 6 ‖µ‖B provided A,B ∈ M are such that A ⊂ B;
(SM2) ‖µ‖⋃∞

n=1
An

6
∑∞
n=1 ‖µ‖An

for any collection of sets An ∈ M.

We divide the proof into a few separate cases.
First assume that

(C1) every set B ∈ M with ‖µ‖B = ∞ may be written in the form B = B1∪
B2 where B1, B2 ∈ M are pairwise disjoint and ‖µ‖B1

= ‖µ‖B2
= ∞.

Using (C1) and the induction argument, we easily find an infinite sequence
of pairwise disjoint sets Bn ∈ M for which ‖µ‖Bn

= ∞. So, it follows from
the definition of the semivariation that for each n we may find finite systems

z
(n)
1 , . . . , z

(n)
Nn

∈ E of vectors whose norms are not greater than 1 and disjoint

sets C
(n)
1 , . . . , C

(n)
Nn

∈ M contained in Bn such that

(4.3)
∥

∥

∥

Nn
∑

k=1

µ(C
(n)
k )z

(n)
k

∥

∥

∥
> 1.

Now it suffices to arrange all sets C
(n)
j in a sequence A1, A2, . . . and the vectors

z
(n)
j in a corresponding sequence x1, x2, . . .; since the sets An are pairwise
disjoint, we conclude from the definition of an i-measure that the series

(4.4)

∞
∑

n=1

µ(An)xn

is unconditionally convergent (in the norm topology), which is contradictory
to (4.3). Thus, in that case the proof is complete.

Now we assume that there is a set W ∈ M with ‖µ‖W = ∞ such that
whenever W = A ∪B and A,B ∈ M are pairwise disjoint, then ‖µ‖A < ∞ or
‖µ‖B <∞. We then conclude from (SM1) that

(C2) if A,B ∈ M are two disjoint subsets ofW and ‖µ‖A = ∞, then ‖µ‖B <

∞.

This case is divided into two subcases. First we additionally assume that there
are a subset V ∈ M of W with ‖µ‖V = ∞ and a number ε > 0 such that

(C3) if D ∈ M is a subset of V with ‖µ‖D = ∞, then there is a set B ∈ M

contained in D for which ε < ‖µ‖B <∞.
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Using (C3) for D = V , we may find a set B1 ∈ M contained in V such that
ε < ‖µ‖B1

<∞. We infer from (SM2) that ‖µ‖V 6 ‖µ‖V \B1
+‖µ‖B1

and hence

‖µ‖V1
= ∞ for V1

def
= V \ B1. Repeating this reasoning for D = V1, we may

find a set B2 ∈ M contained in V1 for which ε < ‖µ‖B2
<∞. Then ‖µ‖V2

= ∞

for V2
def
= V1 \B2. Continuing this procedure, we obtain a sequence of pairwise

disjoint sets Bn ∈ M such that ‖µ‖Bn
> ε. Now repeating the reasoning from

the previous case, we see that for each n there are finite systems z
(n)
1 , . . . , z

(n)
Nn

∈

E of vectors whose norms are not greater than 1 and C
(n)
1 , . . . , C

(n)
Nn

∈ M of

pairwise disjoint subsets of Bn such that ‖
∑Nn

k=1 µ(C
(n)
k )z

(n)
k ‖ > ε. As shown

before, this leads us to a contradiction with the fact that some series of the
form (4.4) is unconditionally convergent.

Finally, we add to (C2) the negation of (C3):

(C4) whenever V ∈ M is a subset of W with ‖µ‖V = ∞ and ε is a positive
real number, then there exists a set D = D(V, ε) ∈ M contained in V
such that ‖µ‖D = ∞ and every subset B ∈ M of D with ‖µ‖B < ∞
satisfies ‖µ‖B 6 ε.

We now define by a recursive formula sets Vn ∈ M: V0
def
= D(W, 1) and Vn

def
=

D(Vn−1, 2
−n) for n > 0. Put V

def
=

⋂∞
n=0 Vn and, for n > 0, Ln

def
= Vn−1 \ Vn.

Since the sets Vn decrease, we see that

(4.5) V0 = V ∪

∞
⋃

n=1

Ln.

Further, it follows from (C2) that ‖µ‖Ln
< ∞ (because ‖µ‖Vn

= ∞ and Ln ∩
Vn = ∅) and hence, thanks to the definition of Vn−1 (see (C4)), ‖µ‖Ln

6 2−n.
So, (SM2) applied to (4.5) gives

(4.6) ‖µ‖V = ∞.

Moreover, since V ⊂ Vn for each n, we deduce from the property of Vn specified
in (C4) that

(∗) for every subset B ∈ M of V , ‖µ‖B ∈ {0,∞}.

We now fix a finite collection A1, . . . , AN ∈ M of pairwise disjoint subsets of
V and a corresponding system x1, . . . , xN ∈ E of vectors whose norms do not
exceed 1. We infer from (C2) and (∗) that there is an index k ∈ {1, . . . , N}
such that ‖µ‖Aj

= 0 for any j 6= k. Noticing that ‖µ(Aj)xj‖ 6 ‖µ‖Aj
, we get

∑N
j=1 µ(Aj)xj = µ(Ak)xk. Consequently,

‖µ‖V = sup{‖µ(A)x‖ : A ∈ M, A ⊂ V, x ∈ E, ‖x‖ 6 1}

= sup{‖µ(A)‖ : A ∈ M, A ⊂ V }.

Since µ is a vector measure (by Lemma 4.3), its range is a bounded set in
L (E,F ) (see, for example, Corollary 19 on page 9 in [6]; a stronger property
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of countably additive vector measures is the content of the Bartle-Dunford-
Schwartz theorem, see Corollary 7 on page 14 in [6]), and therefore the above
formula contradicts (4.6), which finishes the whole proof. �

As a consequence of Theorem 4.4, we obtain a generalisation of the Bartle-
Dunford-Schwartz theorem on the absolute continuity of vector measures with
respect to some finite nonnegative measures (see, for example, Corollary 6 on
page 14 in [5]). Below we continue the notation introduced in the above proof.

Corollary 4.5. If µ : M → L (E,F ) is an i-measure, then there exists a mea-

sure λ : M → [0,∞) such that the following condition is satisfied.

(ac) For every ε > 0 there is δ(ε) > 0 such that ‖µ‖A 6 ε whenever A ∈ M

satisfies λ(A) 6 δ(ε).

What is more, the measure λ may be taken so that for each A ∈ M,

(4.7) 0 6 λ(A) 6 ‖µ‖A.

Before giving a proof, we wish to emphasize that the above result is not a
special case of the Bartle-Dunford-Schwartz theorem mentioned above, because
the semivariation of an i-measure is, in general, greater than the semivariation
of a vector measure, defined in Definition 4 on page 2 in [5].

Proof. Let Γ be the set of all finite systems γ = (A1, . . . , AN ;x1, . . . , xN ) con-
sisting of pairwise disjoint sets An ∈ M and vectors xn ∈ E whose norms are
not greater than 1. For each such γ we define a set function µγ : M → F by

µγ(B)
def
=

∑N
j=1 µ(B ∩ Aj)xj (provided γ = (A1, . . . , AN ;x1, . . . , xN )). It is

easy to see that µγ is a vector measure. Observe also that

(4.8) sup
γ∈Γ

‖µγ(B)‖ = ‖µ‖B (B ∈ M).

The above formula, combined with Theorem 4.4, yields that the collection
{µγ}γ∈Γ is uniformly bounded. Further, let An ∈ M be pairwise disjoint sets.
We claim that

(4.9) lim
n→∞

‖µ‖An
= 0.

Because if not, we may and do assume (after passing to a subsequence, if
necessary) that ‖µ‖An

> ε for some positive real number ε and all n. But this
is impossible, as shown in the proof of Theorem 4.4 (in the part concerning
(C3)). So, (4.9) holds which, combined with (4.8), means that the collection
{µγ}γ∈Γ is uniformly strongly additive (consult Proposition 17 on page 8 in
[5]). We now deduce from Corollary 5 on page 13 in [5] that there is a measure
λ : M → [0,∞) such that (4.7) holds and for any ε > 0 there is δ > 0 for
which supγ∈Γ ‖µγ(A)‖ 6 ε provided λ(A) 6 δ. So, a look at (4.8) finishes the
proof. �
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Whenever µ is an i-measure and λ is a probabilistic measure, both defined
on a common σ-algebra, we shall write µ≪ λ if (ac) is fulfilled.

As a consequence of Corollary 4.5, we obtain the following generalisation of
a theorem of Pettis (see Theorem 1 on page 10 in [5]).

Corollary 4.6. For an i-measure µ : M → L (E,F ) and a measure ν : M →
[0,∞), µ≪ ν if and only if µ vanishes on all sets on which ν vanishes.

Proof. The ‘only if’ part is immediate. To show the ‘if’ part, assume µ vanishes
on all sets on which ν vanishes. By Corollary 4.5, there exists a measure
λ : M → [0,∞) such that

(4.10) µ ≪ λ

and (4.7) is fulfilled. We infer from the latter condition that λ(A) = 0 if and
only if ‖µ‖A = 0. But ‖µ‖A = 0 if and only if µ vanishes on all measurable
subsets of A. We conclude that if ν(A) = 0, then λ(A) = 0. So, it follows
from the Radon-Nikodym theorem that there exists an M-measurable function
g : Z → [0,∞) (where Z is the set on which M is a σ-algebra) such that
λ(A) =

∫

A
g dν for all A ∈ M. In particular, g is ν-integrable and therefore for

any ε > 0 there exists δ > 0 such that
∫

A
g dν 6 ε provided ν(A) 6 δ. This

property, combined with (4.10), finishes the proof. �

Remark 4.7. From Theorem 4.4 one may deduce the following result, which,
due to the knowledge of the author, is new:

The variation of a vector measure µ : M → E is a finite mea-

sure if and only if
∑∞

n=1 ‖µ(An)‖ < ∞ for any countable col-

lection of pairwise disjoint sets An ∈ M.

The necessity is immediate, whereas the sufficiency follows from the fact that a
measure satisfying the condition formulated above may naturally be identified
with an i-measure, as described below.

Assume µ : M → E is a vector measure which satisfies the above condition.
Since every vector x of E naturally induces a (continuous) linear operator from
K into E (which sends 1 to x), we may identify µ with a set function of M into
L (K, E). Under such an identification, µ turns out to be an i-measure whose
total semivariation is equal to the total variation of µ, regarded as an E-valued
set function. We leave the details to the reader.

The book [6] is devoted to integration of vector-valued functions with re-
spect to vector-valued set functions. Below we adapt this concept to define
integration with respect to i-measures, which turns out to be much easier and
more elegant.

Definition 4.8. Let µ : M → L (E,F ) be an i-measure defined on a σ-algebra
M of subsets of a set Z. Denote by SM(Z,E) the set of all functions f ∈
ℓ∞(Z,E) such that the set f(Z) is countable and f−1({e}) ∈ M for any e ∈ E.
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It is easy to see that SM(Z,E) is a linear subspace of ℓ∞(Z,E). For any
f ∈ SM(Z,E) we define

(4.11)

∫

Z

f dµ =

∫

Z

f(z) dµ(z)
def
=

∑

e∈E

µ(f−1({e}))e

(the above series is unconditionally convergent; see Definition 1.3) and call
∫

Z
f dµ the integral of f with respect to µ.
The uniform closure of SM(Z,E) coincides with MM(Z,E) (see Defini-

tion 2.1).

Our aim is to extend the integral defined above from SM(X,E) toMM(X,E).
This is enabled thanks to Theorem 4.4 and the following:

Lemma 4.9. For every i-measure µ : M → L (E,F ) (where M is a σ-algebra

on a set Z), the operator T : SM(Z,E) ∋ f 7→
∫

Z
f dµ ∈ F is linear and

continuous. Moreover, ‖T ‖ = ‖µ‖Z .

A simple proof of Lemma 4.9 is left to the reader.

Definition 4.10. Let µ : M → L (E,F ) be an i-measure defined on a σ-
algebra M of subsets of a set Z. For any f ∈MM(Z,E), the integral

∫

Z
f dµ =

∫

Z
f(z) dµ(z) of f with respect to µ is defined as T̄ f where T̄ : MM(Z,E) → F

is the unique continuous extension of T : SM(Z,E) ∋ f 7→
∫

Z
f dµ ∈ F . Then

‖
∫

Z
f dµ‖ 6 ‖f‖ · ‖µ‖Z for any f ∈MM(Z,E).

Our main result on i-measures is the following:

Theorem 4.11 (BoundedWeak Convergence Theorem). Let µ : M →L (E,F )
be an i-measure (where M is a σ-algebra on a set Z). If fn ∈ MM(Z,E) are

uniformly bounded and converge pointwise to f : Z → E in the weak topology

of E, then
∫

Z
fn dµ converge to

∫

Z
f dµ in the weak topology of F .

The main difficulty in the proof of the above result is that sequences which
weakly converge to 0 may consist of unit vectors. We precede the proof of
Theorem 4.11 by a few auxiliary results. From now until the end of the proof,
Z, M and µ are as specified in Theorem 4.11.

We begin with a counterpart of the Bartle Bounded Convergence [1] (see
also Theorem 1 on page 56 in [5]) for i-measures. Other results in the topic of
bounded and dominated convergence theorems the reader may find in [19] and
[17].

Theorem 4.12 (Bounded Norm Convergence Theorem). If fn ∈ MM(Z,E)
are uniformly bounded and converge pointwise to f : Z → E in the norm topol-

ogy of E, then
∫

Z
fn dµ converge to

∫

Z
f dµ in the norm topology of F .

Proof. We mimic the proof of the Bartle Convergence Theorem presented in [5].
It follows from Corollary 4.5 that there is a probabilistic measure λ : M → [0, 1]
such that (ac) holds. We need to show that ‖

∫

Z
gn dµ‖ converge to 0 for
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gn
def
= fn − f . For each n, there is un ∈ SM(X,E) such that ‖gn − un‖ < 2−n

and ‖
∫

Z
gn dµ−

∫

Z
un dµ(z)‖ < 2−n. We conclude that it suffices to show that

‖
∫

Z
un dµ‖ converge to 0. Note that the functions un are uniformly bounded

and converge pointwise to 0 in the norm topology of E. Suppose ‖un(z)‖ 6 C

for all n and z ∈ Z (and a positive constant C). Fix ε > 0 and put δ = δ(ε/C)
(see (ac)). It follows from Egoroff’s theorem that there exists a set A ∈ M

such that λ(A) 6 δ and the functions un converge uniformly to 0 on Z \ A.
So, denoting (as usual) by jA and jZ\A the characteristic functions of A and
Z \ A (respectively), we see that the functions jZ\Aun converge uniformly to

0. Consequently, limn→∞ ‖
∫

Z
jZ\Aun dµ‖ = 0. Further, it follows from the

definition of the vector integral that ‖
∫

Z
jAun dµ‖ 6 ‖un‖ · ‖µ‖A. Finally,

from the choice of A and δ we infer that ‖µ‖A 6 ε/C and therefore

lim sup
n→∞

∥

∥

∥

∫

Z

un dµ
∥

∥

∥
6 lim sup

n→∞

∥

∥

∥

∫

Z

jAun dµ
∥

∥

∥
+ lim sup

n→∞

∥

∥

∥

∫

Z

jZ\Aun dµ
∥

∥

∥
6 ε

and we are done. �

Lemma 4.13. Let Y be a compact metrisable space and un be members of

M(Y,E). Then the set S of all y ∈ Y for which un(y) converge to 0 in the

weak topology of E is coanalytic (in the sense of Suslin).

Proof. Let us recall that S is coanalytic provided Y \S coincides with the image
of a Borel subset of Y × [0, 1] under a continuous function, which we shall now
show.

Let E0 be the closed linear span of the set
⋃∞
n=1 un(Y ). Since E0 is sep-

arable, there exists an isometric linear operator U : E0 → C([0, 1],K). Since
sequences of elements of C([0, 1],K) which converge to 0 in the weak topology
(of C([0, 1],K)) are simply characterised, we infer that for an arbitrary bounded
sequence of elements zn of E0,

(w) zn converge to 0 in the weak topology of E if and only if Uzn converge
pointwise to 0.

Now define vn : Y × [0, 1] → E by vn(y, t)
def
= U(un(y))(t). Then vn ∈ M(Y ×

[0, 1],K) (compare Lemma 2.3), which means, by the metrisability of Y , that vn

are Borel. We conclude that the setB
def
= {(y, t) ∈ Y×[0, 1] : limn→∞ vn(y, t) =

0} is Borel in Y × [0, 1]. Note that (w) implies that

y ∈ S ⇐⇒ {y} × [0, 1] ⊂ B.

So, denoting by π : Y × [0, 1] → Y the natural projection, we see that S =
Y \ π((Y × [0, 1]) \B), which finishes the proof. �

Lemma 4.14. Let un ∈ SM(Z,E) be uniformly bounded and converge point-

wise to 0 in the weak topology of E, and let ψ ∈ F ∗. There exist a compact

metrisable space Y , an i-measure ν : M(Y ) → L (E,F ), and uniformly bounded
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functions vn ∈ M(Y,E) which converge pointwise to 0 in the weak topology of

E and satisfy (for each n)

(4.12) ψ
(

∫

Z

un dµ
)

= ψ
(

∫

Y

vn dν
)

.

Proof. Denote by B the collection of all nonempty sets of the form u−1
n ({e})

where n and e ∈ E are arbitrary. Observe that B is countable (and nonempty).
So, we may arrange all members of B in an infinite sequence A1, A2, . . . (re-
peating, if necessary, some of them). For simplicity, let jn : Z → {0, 1} stand

for the characteristic function of An. Put Y
def
= {0, 1}ω (that is, Y is the infi-

nite countable power of {0, 1}) and equip Y with the product topology. Define

Φ: Z → Y by Φ(z)
def
= (jn(z))

∞
n=1. It is easy to see that Φ−1(B) ∈ M for

any B ∈ M(Y ) (since Y is metrisable, M(Y ) consists of all Borel sets in Y ).

Further, let ν : M(Y ) → L (E,F ) be given by ν(B)
def
= µ(Φ−1(B)). It is readily

seen that ν is an i-measure such that ‖ν‖Z 6 ‖µ‖Z . Further, we put Z
′ def
= Φ(Z)

and Ym
def
= {(yn)

∞
n=1 ∈ Y : ym = 1}(∈ M(Y )). Observe that

(4.13) Φ(An) = Z ′ ∩ Yn

for any n > 0. We claim that there exist uniformly bounded functions wn ∈
M(Y,E) such that for any superset C ∈ M(Y ) of Z ′ and each n,

(4.14)

∫

Z

un dµ =

∫

Y

jC(y)wn(y) dν(y),

where jC : Y → {0, 1} is the characteristic function of C. We may define the
functions wn as follows. Fix n and for simplicity put (for a moment) u = un.
Write u(Y ) = {e1, e2, . . .} where the vectors ek are distinct (so, there can be
finitely or infinitely many such vectors) and denote by mk a natural number
such that Amk

= u−1({ek}). Notice that the sets Am1
, Am2

, . . . are pairwise
disjoint and cover Z. It follows from the definition of Φ that hence also the sets
Φ(Am1

),Φ(Am2
), . . . are pairwise disjoint (although Φ may not be one-to-one).

Thus, we infer from (4.13) that there are pairwise disjoint sets Bk ∈ M(Y )
such that

(4.15) Bk ∩ Z
′ = Φ(Amk

).

We define wn by the rules: wn(y) = ek for y ∈ Bk and wn(y) = 0 if y /∈
⋃

k Bk.
Since wn(Y ) ⊂ un(Y )∪{0}, we see that the functions wn are uniformly bounded
(it is also clear that they belong to M(Y,E)). Let us briefly check (4.14). If

Z ′ ⊂ C ∈ M(Y ) and w
def
= jCwn, then (under the above notation) Φ(Amk

) =
(Bk ∩ C) ∩ Z

′, thanks to (4.15). So, Φ−1(w−1({ek})) = Amk
provided ek 6= 0.

Hence
∫

Y

w dν =
∑

e∈E

ν(w−1({e}))e =
∑

ek 6=0

µ(Amk
)ek =

∫

Z

un dµ,
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which finishes the proof of (4.14).
Now let S consist of all y ∈ Y for which wn(y) converge to 0 in the weak

topology of E. It follows from Lemma 4.13 that S is coanalytic. Observe that
wn ◦Φ = un (thanks to (4.15)) and therefore Z ′ ⊂ S. Denote by νψ : M(Y ) →
L (E,K) = E∗ the i-measure given by νψ(A) = ψ ◦ ν(A). Now let λ : M →
[0,∞] be the so-called variation of νψ; that is,

λ(A) = sup
{

∞
∑

n=1

‖νψ(An)‖ : An ∈ M are pairwise disjoint subsets of A
}

.

It follows from Proposition 4 (on page 54) in §4 of Chapter I in [6] (and may
easily be checked) that λ(Z) 6 ‖ν‖Z . So, λ is a finite measure. Since coana-
lytic sets are measurable with respect to any finite Borel measure (consult, for
example, Theorem A.13 in [18]; see also Theorem 1 in §4 of Chapter XIII in
[11]), we deduce that there are two sets A,B ∈ M(Y ) such that A ⊂ S ⊂ B

and λ(B \ A) = 0. Consequently, B ⊃ Z ′ and thus (4.14) holds for C = B.

We put vn
def
= jAwn ∈ M(Y,E). We see that the functions vn are uniformly

bounded and converge pointwise to 0 in the weak topology of E, since A ⊂ S.
To show (4.12), we note that

∫

Y
(vn − jBwn) dνψ = 0 (since λ(B \A) = 0) and

hence

ψ
(

∫

Y

vn dν
)

= ψ
(

∑

e∈E

ν(v−1
n ({e}))e

)

=
∑

e∈E

νψ(v
−1
n ({e}))e =

∫

Y

vn dνψ

=

∫

Y

jBwn dνψ = ψ
(

∫

Y

jBwn dν
)

= ψ
(

∫

Z

un dµ
)

.
�

Lemma 4.15. Let Y be a compact space and ν : M(Y ) → L (E,F ) be an i-

measure. Let T : C(Y,E) → F be given by Tf
def
=

∫

Y
f dν and let T̄ : M(Y,E) →

F ∗∗ be as specified in Corollary 2.5. Then ‖T ‖ = ‖ν‖Y and

(4.16) T̄ f =

∫

Y

f dν (f ∈M(Y,E)).

In particular, T̄ : M(Y,E) → F .

Proof. Denote by Sf the right-hand side expression of (4.16). Then S : M(Y,E)
→ F is linear, continuous and ‖S‖ = ‖ν‖Y . So, to conclude the whole asser-
tion, it suffices to show that S = T̄ . Since the weak topology of F coincides
with the topology on F inherited from the weak* topology of F ∗∗, we infer

from Theorem 4.12 and Corollary 2.5 that for L
def
= S as well as L

def
= T̄ one has

(bc*) whenever un ∈M(Y,E) are uniformly bounded and converge pointwise
to u : Y → E in the norm topology of E, then Lun converge to Lu in
the weak* topology of F ∗∗.

Further, the proof of Lemma 2.2 shows thatM(Y,E) coincides with
[

C(Y,E)
]

bnc

(the smallest set among all B ⊂ ℓ∞(Y,E) which include C(Y,E) and satisfy
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(M1’) with Y inserted in place of X ; see the proof of Lemma 2.2). So, we easily
infer from this property and from (bc*) that S = T̄ . �

Proof of Theorem 4.11. We begin similarly as in the proof of Theorem 4.12: it
is enough to show that

∫

Z
gn dµ converge to 0 in the weak topology of F for

gn
def
= fn − f . For each n, there is un ∈ SM(X,E) such that ‖gn − un‖ < 2−n

and ‖
∫

Z
gn dµ−

∫

Z
un dµ(z)‖ < 2−n. We conclude that it suffices to show that

∫

Z
un dµ converge to 0 in the weak topology of F . Note that the functions un

are uniformly bounded and converge pointwise to 0 in the weak topology of E.
Let ψ ∈ F ∗. We only need to show that

(4.17) lim
n→∞

ψ
(

∫

Z

un dµ
)

= 0.

It follows from Lemma 4.14 that we may and do assume Z is a compact metris-

able space and M = M(Z). Let T : C(Z,E) → F be given by Tf
def
=

∫

Z
dµ

and let T̄ : M(Z,E) → F ∗∗ be as specified in Corollary 2.5. We infer from
Lemma 4.15 that

∫

Z
un dµ = T̄ un, and from (BC*) that T̄ un converge point-

wise to 0 in the weak* topology of F ∗∗. Consequently, (4.17) is fulfilled. �

Remark 4.16. Theorem 4.12 enables us to define vector-valued integrable func-
tions with respect to i-measures. Namely, if µ : M → L (E,F ) is an i-measure
on a set Z and g : Z → E is an arbitrary M-measurable (in the sense of Def-

inition 2.1) function, we put D(g)
def
= {A ∈ M : jAg ∈ ℓ∞(Z,E)}. Notice

that D(g) is an ideal in M such that every set A in M is a countable union
of members of D(g). We call the function g integrable if the set function
ν : D(g) ∋ A 7→

∫

Z
jAg dµ ∈ F extends to a (necessarily unique) vector mea-

sure ν̄ : M → F . If this happens, for each A ∈ M we define the integral
∫

A
g dµ

(of g on A with respect to µ) as ν̄(A). Notice that in the above situation, the
set function ν is always a conditional vector measure; that is, if An ∈ D(g) are
pairwise disjoint and

⋃∞
n=1 An ∈ D(g), then ν(

⋃∞
n=1An) =

∑∞
n=1 ν(An), which

follows from Theorem 4.12. In particular, every bounded M-measurable func-
tion is integrable. One may show that integrable functions form a vector space
and the integral

∫

A
(with respect to µ) is a linear operator (for each A ∈ M).

We will not develop this concept here—this remark has only an introductory
character.

5. Weak* i-measures

This part is devoted to generalisation of the concept of i-measures to the
context of weak* topologies of dual Banach spaces and to give representations
of continuous linear operators from C(X,E) into dual Banach spaces. To make
the presentation simple and transparent, for T ∈ L (E,F ∗) and f ∈ F we shall
write 〈f, T (·)〉 to denote the functional E ∋ x 7→ (Tx)f ∈ K.

We begin with:
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Definition 5.1. A series
∑∞
n=1 Tn with summands in L (E,F ∗) is said to

be independently w*-convergent if the series
∑∞

n=1 〈f, Tn(·)〉 (of elements of
L (E,K)) is independently convergent for every f ∈ F . A weak* i-measure is
a set function µ : M → L (E,F ∗) (where M is a σ-algebra on a set Z) such
that for any f ∈ F , the set function M ∋ A 7→ 〈f, µ(A)(·)〉 ∈ L (E,K) is an
i-measure. Equivalently, µ is a weak* i-measure if and only if

〈

f, µ
(

∞
⋃

n=1

An

)

(·)

〉

=

∞
∑

n=1

〈f, µ(An)(·)〉

(for any f ∈ F ) and the series
∑∞
n=1 µ(An) is independently w*-convergent

for any collection of pairwise disjoint sets An ∈ M. The total semivariation

‖µ‖Z ∈ [0,∞] of a weak* i-measure is defined by the formula (1.2), as for
i-measures.

As for i-measures, it turns out that:

Proposition 5.2. Every weak* i-measure has finite total semivariation.

In the proof we shall need the following elementary result, whose proof is
given for the sake of completeness.

Lemma 5.3. For any σ-algebra M on a set Z and Banach spaces E and F ,

the set Mes(M,L (E,F )) of all L (E,F )-valued i-measures on M is a Banach

space when the algebraic operations are defined pointwise and the norm is a

function which assigns to each i-measure its total semivariation.

Proof. It is readily seen that Mes(M,L (E,F )) is a vector space and the func-
tion ‖ · ‖Z is a norm (thanks to Theorem 4.4). Take a Cauchy sequence of
i-measures µn : M → L (E,F ). For any A ∈ M we have ‖µn(A) − µm(A)‖ 6

‖µn − µm‖Z and therefore µ(A)
def
= limn→∞ µn(A) is a well defined member of

L (E,F ). In this way we have obtained a set function µ : M → L (E,F ). It is
immediate that µ is finitely additive. For any ε > 0, choose νε such that

‖µn − µm‖Z 6
1

2
ε

for all n,m > νε. Fix a countable collection of pairwise disjoint sets Ak ∈
M and a sequence of vectors xk ∈ E whose norms do not exceed 1. For

n,m > νε and arbitrary N and M we have ‖
∑N+M
k=N µn(Ak)xk−µm(Ak)xk‖ 6

‖µn − µm‖Z 6
1
2ε. So, letting m→ ∞, we get

(5.1)
∥

∥

∥

N+M
∑

k=N

µn(Ak)xk −

N+M
∑

k=N

µ(Ak)xk

∥

∥

∥
6

1

2
ε (n > νε).

This, in particular, yields that ‖µn − µ‖Z 6
1
2ε for n > νε and consequently

limn→∞ ‖µn − µ‖Z = 0, provided µ is an i-measure. Further, for n = νε the
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series
∑∞

k=1 µn(Ak)xk is convergent, hence there is N0 such that

‖

N+M
∑

k=N

µn(Ak)xk‖ 6
1

2
ε

whenever N > N0 and M > 0. This inequality, combined with (5.1), gives

‖
∑N+M
k=N µ(Ak)xk‖ 6 ε for any N > N0 and M > 0. We conclude that the

series
∑∞

k=1 µ(Ak)xk is convergent. Finally, when xk = x ∈ E for each k (where
‖x‖ 6 1), A1 = B ∈ M and Ak = ∅ for all k > 1, (5.1) gives

(5.2) ‖µn(B)x − µ(B)x‖ 6
1

2
ε (n > νε).

So, if (again) the sets Ak are pairwise disjoint and A
def
=

⋃∞
k=1Ak, then for

n = νε there isM such that ‖µn(A\
⋃N
k=1Ak)x‖ 6

1
2ε for any N >M . Putting

B = A\
⋃N
k=1 Ak (and n = νε) in (5.2), we deduce that ‖µ(A\

⋃N
k=1 Ak)x‖ 6 ε

for any N > M . Thus, limn→∞ ‖µ(A \
⋃n
k=1 Ak)x‖ = 0, which means that µ

is countably additive and consequently µ ∈ Mes(M,L (E,F )). �

Proof of Proposition 5.2. Let µ : M → L (E,F ∗) be a weak* i-measure defined
on a σ-algebraM of subsets of a set Z. For any f ∈ F define µf : M → L (E,K)

by µf (A)
def
= 〈f, µ(A)(·)〉. We infer from the definition of a weak* i-measure

that µf ∈ Mes(M,L (E,F )) and from Lemma 5.3 that Mes(M,L (E,F )) is a
Banach space. So, we conclude from the Closed Graph Theorem that a linear
operator Φ: F ∋ f 7→ µf ∈ Mes(M,L (E,F )) is continuous (it is obvious that

the graph of Φ is closed). Hence, M
def
= sup{‖µf‖Z : f ∈ F, ‖f‖ 6 1} < ∞.

Now take a collection of N pairwise disjoint sets An ∈ M and a corresponding
system of vectors xn ∈ E whose norms do not exceed 1. Then

∥

∥

∥

N
∑

n=1

µ(An)xn

∥

∥

∥
= sup

{∣

∣

∣

N
∑

n=1

(µ(An)xn)(f)
∣

∣

∣
: f ∈ F, ‖f‖ 6 1

}

= sup
{
∣

∣

∣

N
∑

n=1

µf (An)xn

∣

∣

∣
: f ∈ F, ‖f‖ 6 1

}

6M

and thus ‖µ‖Z 6M . �

Example 5.4. One may hope (being inspired by Corollary 4.5 and Proposi-
tion 5.2) that for every weak* i-measure µ there is a nonnegative real-valued
measure λ such that µ vanishes on all sets on which λ vanishes. As the following
example shows, in some cases this is very far from the truth.

Let Z be an uncountable set and M the σ-algebra of all subsets of Z. Let
E = K and F = ℓ1(Z,K). Then F ∗ = ℓ∞(Z,K). Further, for any set A ∈ M let
µ(A) : E → F be given by µ(A)λ = λjA where, as usual, jA is the characteristic
function of A. We see that µ : M → L (E,F ∗). Observe that µ(A) = 0 if and
only if A = ∅ and thus there is no measure λ : M → [0,∞) for which µ ≪ λ
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(because Z is uncountable). However, µ is a weak* i-measure, which may
simply be verified.

Let µ : M → L (E,F ∗) be a weak* i-measure defined on a σ-algebra M of
subsets of a set Z. For f ∈ SM(Z,E), we define the weak* integral

∫ w∗

Z
f dµ of

f with respect to µ as the right-hand side expression of (4.11), understood in
the weak* topology of F ∗; that is,

(

∫ w∗

Z

f dµ
)

(v) =
∑

e∈E

(

µ(f−1({e}))e
)

(v) (v ∈ F ).

We see (as for i-measures) that the operator L : SM(Z,E) ∋ f 7→
∫ w∗

Z
f dµ ∈ F ∗

is linear and continuous, and ‖L‖ = ‖µ‖Z (because the norm of F ∗ is lower
semicontinuous with respect to the weak* topology). We extend the operator L
to the wholeMM(Z,E) and for f ∈MM(Z,E) use

∫ w∗

Z
f dµ to denote the value

at f of the unique continuous extension of L, which is called the weak* integral

of f (with respect to µ). We see that ‖
∫ w∗

Z
f dµ‖ 6 ‖f‖ · ‖µ‖Z. Note also that

if the weak* i-measure is actually an i-measure, then
∫ w∗

Z
f dµ =

∫

Z
f dµ for

any f ∈MM(Z,E). We also have:

Theorem 5.5 (BoundedWeak* Convergence Theorem). Let µ :M→L (E,F ∗)
be a weak* i-measure (where M is a σ-algebra on a set Z). If fn ∈MM(Z,E)
are uniformly bounded and converge pointwise to f : Z → E in the weak topol-

ogy of E, then
∫ w∗

Z
fn dµ converge to

∫ w∗

Z
f dµ in the weak* topology of F ∗.

Proof. Fix v∈F . We need to show that (
∫ w∗

Z
fn dµ)(v) converge to (

∫ w∗

Z
f dµ)(v).

Define ν : M → L (E,K) = E∗ by ν(A)
def
= 〈v, µ(A)(·)〉. It follows from the defi-

nition of a weak* i-measure that ν is an i-measure. What is more, ‖ν‖Z 6 ‖µ‖Z
and

(5.3)
(

∫ w∗

Z

u dµ
)

(v) =

∫

Z

u dν (∈ K)

for any u ∈ MM(Z,E) (this is clear for u ∈ SM(Z,E) and for arbitrary u

follows from the continuity in u of both sides of (5.3)). So, the assertion of the
theorem follows from (5.3) and Theorem 4.11 applied for ν. �

In some cases weak* i-measures are automatically i-measures, as shown by:

Proposition 5.6. LetW be a linear subspace of F ∗ such that W is sequentially

closed in the weak* topology of F ∗ and any weak* vector measure ν : M → F ∗

whose range is contained in W is a vector measure. Then any weak* i-measure

µ : M → L (E,W ) ⊂ L (E,F ∗) is an i-measure. In particular, if W is a linear

subspace of F ∗ that is sequentially closed in the weak* topology and contains

no isomorphic copy of ℓR∞, then every L (E,W )-valued weak* i-measure is an

i-measure.

Proof. Fix an infinite collection of pairwise disjoint sets An ∈ M and a bounded

sequence of vectors xn ∈ E. For each f ∈ F define νf : M → K by νf (B)
def
=
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∑∞
n=1(µ(An∩B)xn)(f). Since the set functions M ∋ B 7→ (µ(An∩B)xn)(f) ∈

K are measures, we see (e.g. by the Vitali-Hahn-Saks-Nikodym theorem; con-
sult Theorem 8 on page 23 in [5]) that νf is a measure as well. Consequently,

the formula (ν(B))(f)
def
= νf (B) (B ∈ M, f ∈ F ) correctly defines a weak*

vector measure ν : M → F ∗. What is more, it follows from the definition
of ν and the property that W is sequentially closed in the weak* topology
of F that ν(B) ∈ W for any B ∈ M. Thus, ν is a vector measure, which
implies that the series

∑∞
n=1 ν(An) is convergent in the norm topology. But

ν(An) = µ(An)xn and consequently
∑∞

n=1 µ(An) is independently convergent.
Since, in addition, 〈f, µ(

⋃∞
n=1An)(·)〉 =

∑∞
n=1 〈f, µ(An)(·)〉 (f ∈ F ), we see

that µ(
⋃∞
n=1An)f =

∑∞
n=1 µ(An)f (f ∈ F ) and we are done.

An additional claim follows from a celebrated result due to Diestel and
Faires [4] (see also [3] or Theorem 2 on page 20 in [5]) which implies that each
W -valued weak* vector measure is a vector measure provided W contains no
isomorphic copy of ℓR∞. �

The proofs of the next two results are skipped. The first of them immediately
follows from the definition of the weak* integral for elements of SM(Z,E),
whereas the second is a consequence of Theorem 5.5 and (BC*).

Proposition 5.7. Let W be a linear subspace of F ∗ that is sequentially closed

in the weak* topology of F ∗. If µ : M → L (E,W ) ⊂ L (E,F ∗) is a weak*

i-measure (where M is a σ-algebra of subsets of a set Z), then
∫ w∗

Z
f dµ ∈ W

for any f ∈MM(Z,E).

Proposition 5.8. Let µ : M(X) → L (E,W ) ⊂ L (E,F ∗) be a weak* i-

measure (where W is a linear subspace of F ∗ that is sequentially closed in

the weak* topology of F ∗). Let T : C(X,E) → W be given by Tf
def
=

∫ w∗

X
f dµ

and let T̄ : M(X,E) → F ∗ be as specified in Corollary 2.5. Then ‖T ‖ = ‖µ‖X
and

T̄ f =

∫ w∗

X

f dµ (f ∈M(X,E)).

Theorem 5.9. Let W be a linear subspace of F ∗ that is sequentially closed in

the weak* topology of F ∗. For every continuous linear operator T : C(X,E) →
W there exists a unique weak* i-measure µ : M(X) → L (E,W ) ⊂ L (E,F ∗)
for which

(5.4) Tf =

∫ w∗

X

f dµ (f ∈ C(X,E)).

Moreover, ‖T ‖ = ‖µ‖X.

Proof. Assume T : C(X,E) →W is a continuous linear operator. The unique-
ness of µ as well as the additional claim of the theorem immediately follow
from Proposition 5.8. We shall now show the existence of µ. We infer from
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the proof of Proposition 3.4 that T extends to T̄ : M(X,E) → W which satis-

fies (BC*). We define µ : M(X) → L (E,W ) by the rule µ(A)x
def
= T̄ (jA(·)x)

where jA : X → {0, 1} is the characteristic function of A (here we also continue
the notational convention introduced in the proof of Lemma 2.2). It is easily
seen that µ(A) ∈ L (E,W ). Assume An ∈ M(X) are pairwise disjoint and let

xn ∈ E be uniformly bounded. Put sN
def
=

∑N
k=1 jAk

(·)xk (N = 1, 2, . . . ,∞).
Notice that the functions sn are uniformly bounded and converge pointwise
(in the norm topology of E) to s∞. So, it follows from (BC*) that the func-
tionals

∑n
k=1 µ(Ak)xk = T̄ sn converge to T̄ s∞ in the weak* topology of F ∗.

This implies that the series
∑∞

k=1 µ(Ak) is independently weak* convergent.
What is more, if xk = x ∈ E for each k, then, under the above notations,
s∞ = j⋃∞

k=1
Ak

(·)x and we see that the series
∑∞

n=1 µ(Ak)x converges in the

weak* topology of F ∗ to T̄ s∞ = µ(
⋃∞
k=1Ak)x. We conclude that µ is a weak*

i-measure. Finally, putting Lf
def
=

∫ w∗

X
f dµ for f ∈ M(X,E), we see that

L : M(X,E) → F ∗ and T̄ are two continuous functions which coincide on
SM(X)(X,E). Since this last space is dense in M(X,E), we conclude that

L = T̄ and thus (5.4) holds. �

The proof of the next result is omitted.

Corollary 5.10. Let Fsc be the smallest linear subspace of F ∗∗ that contains

F and is sequentially closed in the weak* topology of F ∗∗. For every contin-

uous linear operator T : C(X,E) → F there is a (unique) weak* i-measure

µ : M(X) → L (E,Fsc) ⊂ L (E,F ∗∗) for which (5.4) holds.

Proposition 5.11. Let F be a vsc Banach space that contains no isomorphic

copy of ℓR∞. For every continuous linear operator T : C(X,E) → F there exists

a unique i-measure µ : M(X) → L (E,F ) such that (1.3) holds.

Proof. We start from the existence part. There exists a linear isomorphism
Φ: F → W ⊂ Z∗ such that W is a linear subspace of a dual Banach space Z∗

that is sequentially closed in the weak* topology (see Proposition 3.3). It fol-
lows from Theorem 5.9 that there is a weak* i-measure ν : M(X) → L (E,W )
such that

(5.5) (Φ ◦ T )f =

∫ w∗

X

f dν (f ∈ C(X,E)).

Since F contains no isomorphic copy of ℓR∞, so does W and Proposition 5.6

implies that ν is an i-measure. We define µ : M(X) → L (E,F ) by µ(A)
def
=

Φ−1 ◦ ν(A). Straightforward calculations shows that µ is also an i-measure.
Moreover, for u ∈ SM(X)(X,E) one simply has

(5.6)

∫

X

u dµ = Φ−1
(

∫

X

u dν
)

and thus (5.6) holds for all u ∈ M(X,E). Consequently, (5.6) and (5.5) yield
(1.3).
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To establish the uniqueness of µ, it is enough to check that if λ : M(X) →
L (E,F ) is an i-measure such that

∫

X
f dλ = 0 for each f ∈ C(X,E), then

λ = 0. But this simply follows from Theorem 4.11 and the characterisation of
M(X,E) given in Lemma 2.2. �

Remark 5.12. Proposition 6.2 and Lemma 6.5 will show that, under the nota-
tion of Proposition 5.11, ‖µ‖X = ‖T ‖.

Taking into account the characterisation of wsc Banach spaces formulated
in Proposition 3.1, the following result is a little bit surprising.

Corollary 5.13. Let F be a vsc Banach space that contains no isomorphic

copy of ℓR∞. Every continuous linear operator T : C(X,E) → F admits a unique

linear extension T̄ : M(X,E) → F such that (BC) holds with M(X,E) inserted
in place of

[

V
]

bwc
. Moreover, T̄ is continuous and ‖T̄‖ = ‖T ‖.

Proof. Uniqueness, as usual, follows from Lemma 2.2 and (BC). To establish
the existence, apply Proposition 5.11 to get an i-measure µ such that (1.3)
holds and ‖µ‖X = ‖T ‖ (see Remark 5.12). Then define T̄ : M(X,E) → F by

T̄ f
def
=

∫

X
f dµ and use Theorem 4.11 to show (BC). �

Example 5.14. Let us show that the assumption in Proposition 5.11 that F

contains no isomorphic copy of ℓR∞ is essential. Put F
def
= ℓK∞. Since F is a

dual Banach space, it is vsc. Now let T : C([0, 1],K) → F be given by Tf
def
=

(f( 1
n
))∞n=1. It is an elementary exercise to find a uniformly bounded sequence

of functions fn ∈ C([0, 1],K) which converge pointwise to 0 but the vectors Tfn
diverge in the norm topology. This is contradictory to Theorem 4.12, whose
assertion has to be true for any operator T for which Proposition 5.11 holds.

Remark 5.15. As for i-measures, we wish to introduce the concept of inte-
gration of (possibly unbounded) functions with respect to weak* i-measures.
Let µ : M → L (E,F ∗) be a weak* i-measure on a set Z and g : Z → E an
M-measurable function (see Definition 2.1). Let D(g) be as specified in Re-

mark 4.16. Define ν : D(g) → F ∗ by ν(A)
def
=

∫ w∗

Z
jAg dµ. The function g is

said to be weak* integrable if the set function ν : D(g) ∋ A 7→
∫ w∗

Z
jAg dµ ∈ F ∗

extends to a (necessarily unique) weak* vector measure ν̄ : M → F ∗. If this
happens, for each A ∈ M we define the weak* integral

∫ w∗

A
g dµ (of g on A

with respect to µ) as ν̄(A). In the above situation, the set function ν is always
a conditional weak* vector measure, which follows from Theorem 5.5. Thus,
every bounded M-measurable function is weak* integrable. Weak* integrable
functions form a vector space and the weak* integral

∫

A
(with respect to µ) is

a linear operator (for each A ∈ M).

6. Regularisation of i-measures

In this section Y = Ω ⊔ {∞} is a one-point compactification of Ω.
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Definition 6.1. An i-measure µ defined on B(Ω) is said to be regular if every
set A ∈ B(Ω) includes a σ-compact set K such that µ vanishes on every Borel
set contained in K \A.

It is an easy task to check that all regular i-measures form a linear subspace,
to be denoted by Mesr(B(Ω),L (E,F )), of Mes(B(Ω),L (E,F )).

What we mean by a regularisation of an i-measure is the property formulated
below.

Proposition 6.2. Every i-measure µ : M(X) → L (E,F ) is uniquely extend-

able to a regular i-measure µ̄ : B(X) → L (E,F ). What is more, ‖µ̄‖X = ‖µ‖X
and there exists a regular measure λ̄ : B(X) → [0,∞) such that µ̄≪ λ̄.

Proof. Let λ : M(X) → [0,∞) be a measure such that µ ≪ λ (see Corol-
lary 4.5). Then λ extends uniquely to a regular measure λ̄ : B(X) → [0,∞)
(this property may simply be concluded from the Riesz characterisation theo-
rem applied for the linear functional given by C(X,K) ∋ f 7→

∫

X
f dλ ∈ K).

The measure λ̄ has the following property:

(∗∗) for any set A ∈ B(X) there exists a set A# ∈ M(X) such that λ̄(A \
A#) = λ̄(A# \A) = 0.

Notice also that if A and A# are as specified above and A## ∈ M(X) is
such that λ̄(A \ A##) = λ̄(A## \ A) = 0, then µ(A#) = µ(A##) (because
λ(A# \ A##) = λ(A## \ A#) = 0 and µ ≪ λ). This observation means

that the formula µ̄(A)
def
= µ(A#) where, for A ∈ B(X), A# is as specified

in (∗∗) correctly defines a set function µ̄ : B(X) → L (E,F ), which extends
µ. Now take a sequence of pairwise disjoint sets An ∈ B(X). We can find
a sequence of pairwise disjoint sets A#

n ∈ M(X) for which (∗∗) is satisfied
with An and A#

n inserted in place of A and A# (respectively). Consequently,
the series

∑∞
n=1 µ(An) is independently convergent, µ̄(An) = µ(A#

n ) for each

n and µ̄(
⋃∞
n=1 An) = µ(

⋃∞
n=1A

#
n ), which implies that µ̄ is an i-measure and

‖µ̄‖X = ‖µ‖X .
Further, if λ̄(A) = 0 and A# is as specified in (∗∗), then λ(A#) = 0 and,

consequently, µ̄(A) = µ(A#) = 0. This shows that µ̄ ≪ λ̄ (see Corollary 4.6).
Finally, for any A ∈ B(X) one can find a σ-compact set K ⊂ A such that
λ̄(A \K) = 0 and hence µ̄ vanishes on each Borel subset of A \K. This proves
that µ̄ is regular.

To establish the uniqueness of µ̄, assume µ̄′ : B(X) → L (E,F ) is an-
other regular i-measure extending µ. For each e ∈ E and ψ ∈ F ∗, we define

µ̄e,ψ : B(X) → K (and similarly µ̄′
e,ψ : B(X) → K) by µ̄e,ψ(A)

def
= (ψ◦µ̄(A))(e).

It follows from the regularity of µ̄ and µ̄′ that µ̄e,ψ and µ̄′
e,ψ are regular scalar-

valued measures. But both these scalar-valued measures coincide on M(X)
and hence µ̄′

e,ψ = µ̄e,ψ (thanks to the Riesz characterisation theorem). Conse-

quently, µ̄′ = µ̄. �
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As in Proposition 6.2, we denote by µ̄ the unique regular Borel i-measure
which extends an i-measure µ defined on M(X).

Corollary 6.3. For an i-measure µ : B(X) → L (E,F ), the following condi-

tions are equivalent:

(i) µ is regular;
(ii) for any e ∈ E and ψ ∈ F ∗, the scalar-valued measure µe,ψ : B(X) ∋ A 7→

(ψ ◦ µ(A))(e) ∈ K is regular;
(iii) there exists a regular measure ρ : B(X) → [0,∞) such that µ≪ ρ;
(iv) there exists a regular measure λ : B(X) → [0,∞) such that µ ≪ λ and

λ(A) 6 ‖µ‖A for each A ∈ B(X).

Proof. Implications (iv) =⇒ (iii) =⇒ (i) =⇒ (ii) are clear. Further, it follows
from Proposition 6.2 applied for the i-measure µ

∣

∣

M(X)
that (iii) follows from

(i), and that (i) is implied by (ii) (see the proof of the uniqueness part in
Proposition 6.2). So, it remains to check that (iii) implies (iv). Let ρ and
λ be as specified in (iii) and Corollary 4.5, respectively. We may assume λ
satisfies (4.7). It remains to check that λ is regular, which simply follows from
the fact that λ ≪ ρ (because λ vanishes precisely on those sets on which µ

vanishes—see the proof of Corollary 4.6). �

The proof of the next (very simple) result is left to the reader.

Lemma 6.4. An i-measure µ : B(Y ) → L (E,F ) is regular if and only if

ν
def
= µ

∣

∣

B(Ω)
, treated as an i-measure on Ω, is regular.

Lemma 6.5. Let µ : B(Ω) → L (E,F ) be a regular i-measure. Then ‖Tν‖ =
‖ν‖Ω where

(6.1) Tν : C0(Ω, E) ∋ f 7→

∫

Ω

f dν ∈ F.

Proof. It is clear that ‖Tν‖ 6 ‖ν‖Ω. To show the reverse inequality, take a finite
collection of N pairwise disjoint sets Ak ∈ B(Ω) and a corresponding system
of N vectors xk ∈ E whose norms do not exceed 1. We only need to check that

‖
∑N
k=1 ν(Ak)xk‖ 6 ‖Tν‖. It follows from the definition of a regular i-measure

that for each k there exists a sequence of compact subsets K
(k)
n of Ak such

that limn→∞ ‖ν(K
(k)
n )− ν(Ak)‖ = 0. Then, when n is fixed, the sets K

(k)
n are

pairwise disjoint; and limn→∞ ‖
∑N
k=1 ν(K

(k)
n )xk‖ = ‖

∑N
k=1 ν(Ak)xk‖. This

argument allows us to assume the sets Ak are compact. Further, we conclude
(again) from the regularity of ν that for each k there is a decreasing sequence

of open supersets U
(k)
n of Ak such that ν vanishes on every Borel subset of

⋂∞
n=1 U

(k)
n \ Ak. We may also assume that, in addition, the sets U

(k)
1 are

pairwise disjoint. Now, using e.g. Urysohn’s lemma, (for each k) we may

find a decreasing sequence of compact Gδ-sets F
(k)
n with Ak ⊂ F

(k)
n ⊂ U

(k)
n .

Then, for each fixed n, the sets F
(k)
n are pairwise disjoint; limn→∞ ‖ν(F

(k)
n )−
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ν(
⋂∞
n=1 F

(k)
n )‖ = 0 and ν(

⋂∞
n=1 F

(k)
n ) = ν(Ak) (because

⋂∞
n=1 F

(k)
n \ Ak ⊂

⋂∞
n=1 U

(k)
n \Ak). Hence, arguing as before, we may and do assume the sets Ak

are (compact and) Gδ. Take pairwise disjoint open sets Vk such that Ak ⊂ Vk.
Since Ak is Gδ and compact, there exists a sequence of continuous functions

u
(k)
n : Ω → [0, 1] which converge pointwise (as n → ∞) to the characteristic

function jAk
of Ak and vanish off Vk. Put

fn
def
=

N
∑

k=1

u(k)n (·)xk

and observe that fn ∈ C0(Ω, E), ‖fn‖ 6 1 (since ‖xk‖ 6 1 for all k and the sets
Vk are pairwise disjoint) and the functions fn converge pointwise (in the norm

topology of E) to
∑N

k=1 jAk
(·)xk. So, ‖Tνfn‖ 6 ‖Tν‖ for each n; and an appli-

cation of Theorem 4.12 gives ‖
∑N
k=1 ν(Ak)xk‖ = ‖

∫

Ω

∑N
k=1 jAk

(ω)xk dµ(ω)‖ =
limn→∞ ‖Tνfn‖ 6 ‖Tν‖. �

Theorem 6.6. Let F be a vsc Banach space that contains no isomorphic copy

of ℓR∞ and Ω be a locally compact Hausdorff space. For every continuous lin-

ear operator T : C0(Ω, E) → F there exists a unique regular Borel i-measure

µ : B(Ω) → L (E,F ) such that

Tf =

∫

Ω

f dµ (f ∈ C0(Ω, E)).

Moreover, ‖T ‖ = ‖µ‖Ω.

Proof. Below we shall continue to denote by Tν the operator defined by (6.1)
(provided ν ∈ Mesr(B(Ω),L (E,F ))).

For each e ∈ F , let ce : Ω → F stand for the constant function whose only

value is e. Define S : C(Y,E) → F by Su
def
= T (u

∣

∣

Ω
− cu(∞)). It is clear that

S is continuous and linear. So, it follows from Proposition 5.11 that there is
an i-measure ν : M(Y ) → L (E,F ) for which Su =

∫

Y
u dν (u ∈ C(Y,E)). We

define µ : B(Ω) → L (E,F ) as the restriction of ν̄ to B(Ω). We conclude from
Lemma 6.4 that µ is regular. Since every function g ∈ C0(Ω, E) extends to a
continuous function ḡ on Y which vanish at ∞, we see that

∫

Ω g dµ =
∫

Y
ḡ dν̄.

But
∫

Y
ḡ dν̄ =

∫

Y
ḡ dν = Sḡ = T (g) and hence T = Tµ.

Finally, since the operator

Φ: Mesr(B(Ω),L (E,F )) ∋ ν 7→ Tν ∈ L (C0(Ω, E), F )

is linear, Lemma 6.5 yields that Φ is isometric and hence one-to-one, which
finishes the proof. �

Proof of Theorem 1.4. Just notice that all wsc Banach spaces as well as all
dual Banach spaces are vsc and all wsc Banach spaces contain no isomorphic
copy of ℓR∞ (since they even contain no isomorphic copy of c0), and then apply
Theorem 6.6 and Lemma 6.5. �
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Corollary 6.7. Assume F is a vsc Banach space that contains no isomorphic

copy of ℓR∞ and T : C0(Ω, E) → F is continuous and linear. If fn ∈ C0(Ω, E)
are uniformly bounded and converge pointwise (to a possibly discontinuous func-

tion) in the norm topology of E, then Tfn converge in the norm topology of

F . In particular, if, in addition, E = K, then T sends weakly fundamental

sequences into norm convergent sequences.

Proof. It follows from Theorem 6.6 that Tf =
∫

Ω f dµ for some regular Borel
i-measure µ. So, the first assertion follows from Theorem 4.12. The additional
claim follows from the first and the characterisation of weakly fundamental
sequences in C0(Ω,K) (these are precisely those which are uniformly bounded
and converge pointwise to a possibly discontinuous function). �

The reader interested in other results on continuous linear operators defined
on the spaces of the form C(X,K) (into arbitrary Banach spaces) is referred
to Chapter VI in [5].

Example 6.8. Taking into account all properties established above, a natural
question arises whether the first assertion of Corollary 6.7 holds for more general
cases, such as:

• T : C(X,E) → F where F is an arbitrary Banach space that contains
no isomorphic copy of ℓR∞;

• T : V → F where F is wsc and V is a linear subspace of C(X,E).

(above T is assumed to be continuous and linear.) Let us briefly explain that, in
general, the answer is negative (in both the above cases). For a counterexample

in the first settings, just put F
def
= C([0, 1],K) and take the identity operator

on F . To disprove the assertion of Corollary 6.7 in the second case, take an

isometric copy V of F
def
= L2([0, 1]) in C([0, 1],K) and define T as a linear

isometry of V onto L2([0, 1]).

Corollary 6.7 enables us to give an example of classical Banach spaces which
are not vsc.

Corollary 6.9. For every infinite second countable locally compact topological

space Ω, the Banach space C0(Ω,K) is not vsc. In particular, c0 and C([0, 1],K)
are not vsc.

Proof. Since F
def
= C0(Ω,K) is separable, it contains no isomorphic copy of

ℓR∞. So, if F was vsc, the identity operator on F would satisfy the assertion of
Corollary 6.7, which is false. �

We now turn to regular weak* i-measures.

Definition 6.10. A weak* i-measure µ : B(Ω) → L (E,F ∗) is regular if for
any f ∈ F , the i-measure µf : B(Ω) ∋ A 7→ 〈f, µ(A)(·)〉 ∈ L (E,K) is regular.

The reader should notice that the set of all L (E,F ∗)-valued regular Borel
weak* i-measures on Ω is a vector space. We also wish to emphasize that, in
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general, for a weak* i-measure µ and a Borel set A there may be no σ-compact
subset K of A such that µ vanishes on every Borel subset of A \K.

Lemma 6.11. Every weak* i-measure µ : M(X) → L (E,F ∗) extends to a

unique regular weak* i-measure µ̄ : B(X) → L (E,F ∗). Moreover, ‖µ̄‖X =
‖µ‖X.

Proof. For each f ∈ F , let νf : B(X) → L (E,K) be the unique regular i-
measure which extends µf : M(X) ∋ A 7→ 〈f, µ(A)(·)〉 ∈ L (E,K) (see Propo-
sition 6.2). It follows from the uniqueness of the extension that the opera-
tor F ∋ f 7→ νf ∈ Mesr(B(X),L (E,K)) is linear. Moreover, ‖νf(A)‖ 6

‖νf‖X · ‖f‖ = ‖µf‖X · ‖f‖ 6 ‖µ‖X · ‖f‖. One concludes that the rule
〈f, µ̄(A)(·)〉 = νf (A) (f ∈ F, A ∈ B(X)) correctly defines a set function
µ̄ : B(X) → L (E,F ∗). It follows from the very definition of µ̄ that µ̄ is a
regular weak* i-measure. What is more, if Ak ∈ B(X) are paiwise disjoint and
xk ∈ E have norms not exceeding 1, then

∥

∥

∥

N
∑

k=1

µ̄(Ak)xk

∥

∥

∥
= sup

{
∣

∣

∣

N
∑

k=1

(µ̄(Ak)xk)(f)
∣

∣

∣
: f ∈ F, ‖f‖ 6 1

}

= sup
{∣

∣

∣

N
∑

k=1

νf (Ak)xk

∣

∣

∣
: f ∈ F, ‖f‖ 6 1

}

= sup{‖νf‖X : f ∈ F, ‖f‖ 6 1} 6 ‖µ‖X

and therefore ‖µ̄‖X = ‖µ‖X . The uniqueness of µ̄ follows from Proposition 6.2.
�

As for i-measures, for any weak* i-measure µ : M(X) → L (E,F ∗), we shall
denote by µ̄ : B(X) → L (E,F ∗) the unique extension of µ to a regular weak*
i-measure. It is worth noting here that if W is a linear subspace of F ∗ that is
sequentially closed in the weak* topology and µ(M(X)) ⊂ L (E,W ), then, in
general, the range of µ̄ may contain operators which do not belong to L (E,W ).
This is why we deal here with dual Banach spaces instead of their weak* se-
quentially closed subspaces.

As for i-measures, we have:

Lemma 6.12. A weak* i-measure µ : B(Y ) → L (E,F ∗) is regular if and only

if ν
def
= µ

∣

∣

B(Ω)
, treated as a weak* i-measure on Ω, is regular.

Proof. The assertion immediately follows from Lemma 6.4. �

Lemma 6.13. For every regular weak* i-measure µ : B(Ω) → L (E,F ∗),
‖Tµ‖ = ‖µ‖Ω where

(6.2) Tµ : C0(Ω, E) ∋ u 7→

∫ w∗

Ω

u dµ ∈ F ∗.
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Proof. As usual, for each f ∈ F , denote by µf : B(Ω) → L (E,K) a regular
i-measure given by µf (A) = 〈f, µ(A)(·)〉. Observe that (Tµu)(f) =

∫

Ω
u dµf for

any f ∈ F and u ∈ C0(Ω, E). It follows from Lemma 6.5 that ‖ 〈f, Tµ(·)〉 ‖ =
‖µf‖Ω and therefore ‖Tµ‖ = sup{‖µf‖Ω : f ∈ F, ‖f‖ 6 1} = ‖µ‖Ω. �

Theorem 6.14. For every continuous linear operator T : C0(Ω, E) → F ∗ there

exists a unique regular weak* i-measure µ : B(Ω) → L (E,F ∗) such that T = Tµ
where Tµ is given by (6.2). Moreover, ‖T ‖ = ‖µ‖Ω.

Proof. Thanks to Lemma 6.13, it suffices to show the existence of µ (see the
last paragraph in the proof of Theorem 6.6). We repeat some of arguments
used in the proof of Theorem 6.6. For each e ∈ E, let ce : Ω → E be the

constant function whose only value is e. Define S : C(Y,E) → F ∗ by Su
def
=

T (u
∣

∣

Ω
− cu(∞)). It follows from Theorem 5.9 that there exists an i-measure

ν : M(X) → L (E,F ∗) such that Su =
∫ w∗

Y
u dν for all u ∈ C(Y,E). We define

µ as the restriction of ν̄ (see Lemma 6.11) to B(Ω). We infer from Lemma 6.12
that µ is a regular weak* i-measure. Now it suffices to repeat the reasoning
presented in Theorem 6.6 in order to verify that T = Tµ. �

We conclude the section with the following consequence of Theorem 6.14,
whose proof is left to the reader.

Corollary 6.15 (General Riesz Characterisation Theorem). For any contin-

uous linear operator T : C0(Ω, E) → F there exists a unique regular weak*

i-measure µ : B(Ω) → L (E,F ∗∗) such that Tf =
∫ w∗

Ω f dµ for any f ∈
C0(Ω, E). Moreover, ‖T ‖ = ‖µ‖Ω.

7. Closure of a convex set

As we shall see, Theorem 1.5 is a consequence of the next result. For the
need of its formulation, we introduce the following:

Definition 7.1. Let D be a Borel subset of Ω. For any set A ⊂MB(D)(D,E),

the space
[

A
]∗

bwc
is defined as the smallest set among all B ⊂ MB(D)(D,E)

such that:

(M∗0) A ⊂ B;
(M∗1) a function u ∈ MB(D)(D,E) belongs to B provided the following con-

dition is fulfilled:
(aec) for every finite regular Borel measure µ onD there exist a uniformly

bounded sequence of functions un ∈ B and a set Z ∈ B(D) with
µ(Z) = 0 such that the vectors un(ω) converge to u(ω) in the weak
topology of E for any ω ∈ D \ Z.

It is an easy exercise that
[

A
]

bwc
⊂

[

A
]∗

bwc
for any A ⊂ MB(D)(D,E), and

that
[

V
]∗

bwc
is a linear subspace of MB(D)(D,E) provided V is so.

Using Lemma 2.2, one may check that
[

C(X,E)
]∗

bwc
= MB(X)(X,E) for

any compact space X .
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Theorem 7.2. Let K be a convex subset of C0(Ω, E) and B be a countable

collection of pairwise disjoint Borel subsets of Ω that cover Ω. For a function

f ∈ C0(Ω, E) the following conditions are equivalent:

(i) f belongs to the norm closure (in C0(Ω, E)) of K ;

(ii) f
∣

∣

S
∈

[

K
∣

∣

S

]∗

bwc
(where K

∣

∣

S

def
=

{

g
∣

∣

S
∈ C(S,E) : g ∈ K

}

) for every

Borel set S ⊂ Ω such that S ∩B is σ-compact for each B ∈ B;
(iii) there exists a real constant R > 0 such that f

∣

∣

L
∈

[

(K ∩ B(R))
∣

∣

L

]∗

bwc

(where B(R)
def
= {g ∈ C0(Ω, E) : ‖g‖ 6 R}) for every L ∈ B(Ω) such that

the set L ∩B is compact for each B ∈ B and nonempty only for a finite

number of such B.

Proof. We may and do assume that K is nonempty. It is readily seen that
both conditions (ii) and (iii) are implied by (i). First we shall show that
(i) follows from (ii). Assume f satisfies (ii) and suppose, on the contrary,
that f is not in the norm closure of K . We infer from the separation theo-
rem that there is a continuous linear functional ψ : C0(Ω, E) → K such that

γ
def
= sup{Re(ψ0(u)) : u ∈ K } < Re(ψ(f)). Since K is wsc, it follows from

Theorem 1.4 that ψ is of the form

ψ(g) =

∫

Ω

g dµ (g ∈ C0(Ω, E))

for some L (E,K)-valued regular Borel i-measure µ. Further, we infer from the
regularity of µ that for any B ∈ B there is a σ-compact set SB ⊂ B such that

µ vanishes on every Borel subset of B \SB. We put S
def
=

⋃

B∈B
SB. Since B is

countable, we see that S ∈ B(Ω). What is more, for each B ∈ B, S ∩B = SB
(because members of B are pairwise disjoint) and thus S∩B is σ-compact. For
any function u ∈MB(S)(S,E) we shall denote by u# the (unique) extension of
u to a member of MB(Ω)(Ω, E) which vanishes off S. We shall now verify that

f
∣

∣

S
/∈
[

K
∣

∣

S

]∗

bwc
(which contradicts (ii)). To this end, it is enough to show that

(7.1) Re
(

∫

Ω

u# dµ
)

6 γ

for any u ∈
[

K
∣

∣

S

]∗

bwc
. To do that, denote by H the set of all functions

u ∈MB(S)(S,E) for which (7.1) holds. Since µ vanishes on every Borel subset

of Ω \ S, we see that K
∣

∣

S
⊂ H . Now assume a function u ∈ MB(S)(S,E)

satisfies condition (aec) (with D
def
= S and B

def
= H ). Taking into account

Corollary 6.3, we conclude that there are a uniformly bounded sequence of
functions un ∈ H and a set Z ∈ B(S) such that µ vanishes on every Borel
subset of S \ Z and the vectors un(ω) converge to u(ω) in the weak topology
of E for any ω ∈ S \ Z. One easily infers from Theorem 4.11 that then

limn→∞

∫

Ω u
#
n dµ =

∫

Ω u
# dµ and therefore the set B

def
= H satisfies condition

(M̄1). Consequently,
[

K
∣

∣

S

]∗

bwc
⊂ H and we are done.
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We now turn to the proof that (i) is implied by (iii). This part is more
subtle. Let R > 0 be as specified in (iii). We shall show that f belongs to the
norm closure of K ∩B(R). To this end, replacing K by K ∩ B(R), we may
assume that K ⊂ B(R) is such that

(iii’) f
∣

∣

L
∈
[

K
∣

∣

L

]∗

bwc
for every L ∈ B(Ω) such that the set L∩B is compact

for each B ∈ B and nonempty only for a finite number of such B.

Enlarging, if necessary, R, we may and do assume that f ∈ B(R) as well. As
before, we suppose, on the contrary, that f is not in the norm closure of K

and take an L (E,K)-valued regular Borel i-measure µ such that

(7.2) Re
(

∫

Ω

u dµ
)

6 γ

for all u ∈ K and some real constant γ, whereas

(7.3) (ε
def
= )

1

3

(

Re
(

∫

Ω

f dµ
)

− γ
)

> 0.

Further, let λ be a finite nonnegative regular Borel measure on Ω for which
µ ≪ λ. Using the last property, take δ > 0 such that ‖µ‖A 6

ε
R

whenever
A ∈ B(Ω) is such that λ(A) 6 2δ. Write B = {B1, B2, . . .} and for any n > 0
take a compact set Ln ⊂ Bn for which λ(Bn \ Ln) 6

δ
2n . Further, let N > 0

be such that
∑∞

n=N+1 λ(Bn) 6 δ. We put L
def
=

⋃N
n=1 Ln (∈ B(Ω)). We see

that L ∩ Bn coincides with Ln for n 6 N and is empty otherwise. Our aim
is to show that f

∣

∣

L
/∈
[

K
∣

∣

L

]∗

bwc
. Observe that λ(Ω \ L) 6 2δ and therefore

‖µ‖Ω\L 6 ε/R. Consequently, |
∫

Ω
jΩ\Lu dµ| 6 ε whenever u ∈ B(R) (where,

as usual, jΩ\L denotes the characteristic function of Ω \ L). So, we conclude
from (7.2) and (7.3) that

(7.4) Re
(

∫

Ω

u# dµ
)

6 γ + ε

for all u ∈ K
∣

∣

L
and Re(

∫

Ω
jLf dµ) > γ+ ε. Now similarly as in the proof that

(i) follows from (ii), one shows that (7.4) holds for all u ∈
[

K
∣

∣

L

]∗

bwc
and hence

f
∣

∣

L
/∈
[

K
∣

∣

L

]∗

bwc
(because (f

∣

∣

L
)# = jLf). �

Corollary 7.3. Let K be a convex set in C0(Ω, E).

(a) If K is bounded, its norm closure consists precisely of those functions

f ∈ C0(Ω, E) that f
∣

∣

L
∈
[

K
∣

∣

L

]∗

bwc
for any compact set L ⊂ Ω.

(b) If Ω is compact, the norm closure of K coincides with
[

K
]∗

bwc
.

Proof. In both the cases put B
def
= {Ω}. In case (a), take R > 0 such that

K ⊂ B(R) and apply item (iii) of Theorem 7.2. In case (b) just apply point
(ii) of that result. �

Proposition 7.4. Let A be a C∗-algebra and A be a ∗-subalgebra of C0(Ω,A).
Let B be a countable collection of pairwise disjoint Borel subsets of Ω that cover
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Ω. The norm closure of A consists precisely of those functions f ∈ C0(Ω,A)
such that

(cc) f
∣

∣

K
∈

[

A
∣

∣

K

]∗

bwc
for every set K ∈ B(Ω) such that the set K ∩ B is

compact for each B ∈ B and nonempty only for a finite number of such

B.

In particular, if (f ∈ C0(Ω,A) and) f
∣

∣

L
belongs to

[

A
∣

∣

L

]∗

bwc
for any compact

set L ⊂ Ω, then f is in the uniform closure of A .

Proof. First of all, we may and do assume that A is closed. It is enough to
check that every function f ∈ C0(Ω,A) for which (cc) holds belongs to the norm
closure of A . To this end, take R > ‖f‖. We shall show that condition (iii) of
Theorem 7.2 (with K = A ) holds for such R (which will finish the proof). Let
L ⊂ Ω be as specified in that condition (or, equivalently, as specified in (cc)). It

follows from (cc) that f
∣

∣

L
∈
[

A
∣

∣

L

]∗

bwc
. Now point (b) of Corollary 7.3 (applied

for Ω
def
= L and K

def
= A

∣

∣

L
) yields that f

∣

∣

L
belongs to the norm closure of A

∣

∣

L
.

Since the function A ∋ g 7→ g
∣

∣

L
∈ C0(L,E) is a ∗-homomorphism (with range

A
∣

∣

L
) between C∗-algebras, it sends the open unit ball of A onto the open unit

ball of A
∣

∣

L
. Consequently, f

∣

∣

L
∈ (A ∩B(R))

∣

∣

L
and we are done. �

Proof of Theorem 1.5. Each of the three cases is a special case of one of Corol-
lary 7.3 and Proposition 7.4. �

Theorem 7.2 is at least surprising and seems to be a convenient tool. Re-
cently we use its consequence—Proposition 7.4 (in its almost exact form)—to
describe models for all so-called subhomogeneous C∗-algebras (which may be
seen as a solution of a long-standing problem). The reader interested in this
topic is referred to [14]. Below we give an illustrative example of usefulness of
Theorem 1.5. (The result below is certainly known.)

Corollary 7.5. Let d denote the natural metric on X
def
= [0, 1]. The linear

span V of all functions d(x, ·) is dense in C(X,R).

Proof. Thanks to Theorem 1.5, it suffices to show that
[

V
]

bwc
contains all

continuous functions, which is quite easy: d(0, ·) + d(1, ·) ≡ 1 and for any
x ∈ X \ {1} and small enough h > 0 the functions 1

h
(d(x + h, ·) − d(x, ·)) are

uniformly bounded, belong to V and converge pointwise to the function given
by

t 7→

{

1, t 6 x

−1, t > x.

We conclude that the characteristic function of [0, x] is a member of
[

V
]

bwc
for

any x ∈ X . So, the characteristic functions of all intervals of the form (a, b]
(with 0 6 a < b 6 1) also belong to V . Noticing that every continuous function
on X is a uniform limit of linear combinations of such functions, we finish the
proof. �
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Remark 7.6. The assertion of Corollary 7.5 (under the notations of that result)
is equivalent to the following property:

If two complex-valued Borel measures µ and ν on X satisfy

(7.5)

∫

X

d(x, t) dµ(t) =

∫

X

d(y, t) dν(t) for all x ∈ X,

then µ = ν.

We leave it as an exercise that there exists a finite metric space (X, d) such
that (7.5) holds for two different probabilistic measures µ and ν on X .

We conclude the paper with the following:

Example 7.7. Taking into account Proposition 7.4 and item (a) of Corol-
lary 7.3, it is natural to ask whether the assumption in this item that K is
bounded is essential. Below we answer this issue in the affirmative.

Let Ω = R, E = K and let K consist of all functions u ∈ C0(R,K) for which

∞
∑

n=1

u(n)

2n
= 0.

Observe that K is a closed proper linear subspace of C0(R,K) (as the kernel of
a continuous linear functional). However, invoking Tietze’s extension theorem,
it is an easy exercise to show that K

∣

∣

D
= C(D,K) for any compact set D ⊂ R.
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