STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY-MONOTONE MAPPINGS IN A BANACH SPACE

Ying LiU

Abstract

In this paper, we introduce a new iterative sequence for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

1. Introduction

Let E be a real Banach space with norm $\|\cdot\|$, let E^{*} denote the dual of E and let $\langle x, f\rangle$ denote the value of $f \in E^{*}$ at $x \in E$. Suppose that C is a nonempty, closed convex subset of E and A is a monotone operator of C into E^{*}. Then we study the problem of finding a point $u \in C$ such that

$$
\begin{equation*}
\langle v-u, A u\rangle \geq 0 \quad \forall v \in C \tag{1.1}
\end{equation*}
$$

This problem is called the variational inequality problem [8]. The set of solutions of the variational inequality problem is denoted by $V I(C, A)$. Such a problem is connected with the convex minimization problem, the complementarity problem, the problem of finding a point $u \in E$ satisfying $0=A u$ and so on. An operator A of C into E^{*} is said to be inverse-strongly-monotone $[4,7,9]$ if there exists a positive real number α such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

[^0]for all $x, y \in C$. In such a case, A is said to be α-inverse-strongly-monotone. If A is an α-inverse-strongly-monotone mapping of C into E^{*}, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous.

A mapping T of C into E is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

We denoted by $F(T)$ the set of fixed points of T. In 2005, Iiduka and Takahashi[5] proved strong convergence theorems for finding a common element of the set of solution of the variational inequality problem for an inverse-stronglymonotone mapping and the set of fixed points of a nonexpansive mapping in a Hilbert space. In 2008, Matsushita and Takahashi[10]proved a strong convergence theorem for a nonexpansive mapping T in a Banach space by using the following hybrid method:

$$
\left\{\begin{align*}
x_{0} & =x \in C \tag{1.2}\\
C_{n} & =\overline{c o}\left\{z \in C:\|z-T z\| \leq t_{n}\left\|x_{n}-T x_{n}\right\|\right\} \\
D_{n} & =\left\{z \in C:\left\langle x_{n}-z, J\left(x-x_{n}\right)\right\rangle \geq 0\right\} \\
x_{n+1} & =P_{C_{n} \cap D_{n}} x, n=0,1,2, \cdots,
\end{align*}\right.
$$

where $P_{C_{n} \cap D_{n}}$ is the metric projection from C into $C_{n} \bigcap D_{n}, \overline{c o} D$ denotes the convex closure of the set D and $\left\{t_{n}\right\}$ is a sequence in $(0,1)$ with $t_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then, they proved that the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} x$. Recently, Iiduka and Takahashi[6] proved a weak convergence theorem for finding a solution of the variational inequality problem for an operator A that satisfies the following conditions in a 2-uniformly convex and uniformly smooth Banach space E :
(A1) A is α-inverse-strongly-monotone;
(A2) $V I(C, A) \neq \emptyset$;
(A3) $\|A y\| \leq\|A y-A u\|$ for all $y \in C$ and $u \in V I(C, A)$.
Inspired and motivated by these facts, our purpose in this paper is to obtain a strong convergence theorem for finding a common element of the set of solutions of a variational inequality problem and the set of fixed points of a nonexpansive mapping in a Banach space by using the hybrid method. Our results generalize the results of [5] from Hilbert spaces to Banach spaces. Furthermore, our results also generalize the result of [6] from weak convergence to strong convergence.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers, respectively. When $\left\{x_{n}\right\}$ is a sequence in E, we denote strong convergence of $\left\{x_{n}\right\}$ to $x \in E$ by $x_{n} \rightarrow x$ and weak convergence by $x_{n} \rightharpoonup x$.

A multi-valued operator $S: E \rightarrow 2^{E^{*}}$ with domain $D(S)=\{z \in E: S z \neq$ $\emptyset\}$ and range $R(S)=\bigcup\left\{S z \in E^{*}: z \in D(S)\right\}$ is said to be monotone if $\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle \geq 0$ for each $x_{i} \in D(S)$ and $y_{i} \in S x_{i}, i=1,2$. A monotone
operator S is said to be maximal if its graph $G(S)=\{(x, y): y \in S x\}$ is not properly contained in the graph of any other monotone operator.

Let $U=\{x \in E:\|x\|=1\}$. A Banach space E is said to be strictly convex if for any $x, y \in U$ and $x \neq y$ implies $\left\|\frac{x+y}{2}\right\|<1$. It is also said to be uniformly convex if for each $\epsilon \in(0,2$], there exists $\delta>0$ such that for any $x, y \in U$, $\|x-y\| \geq \epsilon$ implies $\left\|\frac{x+y}{2}\right\| \leq 1-\delta$. It is known that a uniformly convex Banach space is reflexive and strictly convex. And we define a function $\delta:[0,2] \rightarrow[0,1]$ called the modulus of convexity of E as follows:

$$
\delta(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in U,\|x-y\| \geq \epsilon\right\} .
$$

Then E is uniformly convex if and only if $\delta(\epsilon)>0$ for all $\epsilon \in(0,2]$. Let p be a fixed real number with $p \geq 2$. A Banach space E is said to be p-uniformly convex if there exists a constant $c>0$ such that $\delta(\epsilon) \geq c \epsilon^{p}$ for all $\epsilon \in[0,2]$. For example, see [3] and [13] for more details. We know the following fundamental characterization $[3,6]$ of p-uniformly convex Banach spaces:

Lemma 2.1. ([3]) Let p be a real number with $p \geq 2$ and let E be a Banach space. Then E is p-uniformly convex if and only if there exists a constant $0<c \leq 1$ such that

$$
\begin{equation*}
\frac{1}{2}\left(\|x+y\|^{p}+\|x-y\|^{p}\right) \geq\|x\|^{p}+c^{p}\|y\|^{p} \tag{2.1}
\end{equation*}
$$

for all $x, y \in E$.
The best constant $1 / c$ in Lemma 2.1 is called the p-uniformly convexity constant of $E[3]$. Putting $x=\frac{(u+v)}{2}$ and $y=\frac{(u-v)}{2}$ in (2.1), we readily conclude that, for all $u, v \in E$,

$$
\begin{equation*}
\frac{1}{2}\left(\|u\|^{p}+\|v\|^{p}\right) \geq\left\|\frac{u+v}{2}\right\|^{p}+c^{p}\left\|\frac{u-v}{2}\right\|^{p} . \tag{2.2}
\end{equation*}
$$

A Banach space E is said to be smooth if the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\|x+t y\|-\|x\|}{t} \tag{2.3}
\end{equation*}
$$

exists for all $x, y \in U$. It is also said to be uniformly smooth if the limit (2.3) is attained uniformly for $x, y \in U$. One should note that no Banach space is p-uniformly convex for $1<p<2$; see [13] for more details. It is well known that Hilbert and the Lebesgue $L^{q}(1<q \leq 2)$ spaces are 2 -uniformly convex, uniformly smooth.

On the other hand, with each $p>1$, the (generalized) duality mapping J_{p} from E into $2^{E^{*}}$ is defined by

$$
J_{p}(x):=\left\{v \in E^{*}:\langle x, v\rangle=\|x\|^{p},\|v\|=\|x\|^{p-1}\right\}, \quad \forall x \in E .
$$

In particular, $J=J_{2}$ is called the normalized duality mapping. If E is a Hilbert space, then $J=I$, where I is the identity mapping. The duality mapping J has the following properties:
(i) if E is smooth, then J is single-valued;
(ii) if E is strictly convex, then J is one-to-one;
(iii) if E is reflexive, then J is surjective.
(iv) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E.

Lemma 2.2. ([6]) Let p be a given real number with $p \geq 2$ and let E be a p-uniformly convex Banach space. Then, for all $x, y \in E, j_{x} \in J_{p} x$ and $j_{y} \in J_{p} y$,

$$
\left\langle x-y, j_{x}-j_{y}\right\rangle \geq \frac{c^{p}}{2^{p-2} p}\|x-y\|^{p}
$$

where J_{p} is the generalized duality mapping of E and $1 / c$ is the p-uniformly convexity constant of E.

A Banach space E is said to have the K-K property if a sequence $\left\{x_{n}\right\}$ of E satisfying that $x_{n} \rightharpoonup x \in E$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x$. It is known that if E is uniformly convex, then E has the K-K property. Let E be a smooth Banach space. The function $\phi: E \times E \rightarrow R$ is defined by

$$
\phi(y, x)=\|y\|^{2}-2\langle y, J x\rangle+\|x\|^{2}
$$

for all $x, y \in E$. It is obvious from the definition of the function ϕ that

$$
\begin{equation*}
(\|y\|-\|x\|)^{2} \leq \phi(y, x) \leq(\|y\|+\|x\|)^{2} \quad \forall x, y \in E . \tag{2.4}
\end{equation*}
$$

Remark 1. From Remark 2.1 of [11], we know that $\phi(x, y)=0$ if and only if $x=y$.

Lemma 2.3. ([11]) Let E be a uniformly convex and smooth Banach space and let $\left\{y_{n}\right\},\left\{z_{n}\right\}$ be two sequences of E. If $\phi\left(y_{n}, z_{n}\right) \rightarrow 0$, and either $\left\{y_{n}\right\}$, or $\left\{z_{n}\right\}$ is bounded, then $y_{n}-z_{n} \rightarrow 0$.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive, strictly convex and smooth. Then, for any $x \in E$, there exists a unique element $x_{0} \in C$ such that

$$
\phi\left(x_{0}, x\right)=\min _{y \in C} \phi(y, x) .
$$

The mapping $\Pi_{C}: E \rightarrow C$ defined by $\Pi_{C} x=x_{0}$ is called the generalized projection $[2,6,11]$. In a Hilbert space, $\Pi_{C}=P_{C}$ (metric projection). The following are well-known results.
Remark 2. From Remark 1, it is easy to see that $\Pi_{E}=I$.
Lemma 2.4. ([2, 6, 11]) Let C be a nonempty closed convex subset of a smooth Banach space E and $x \in E$. Then, $x_{0}=\Pi_{C} x$ if and only if

$$
\left\langle x_{0}-y, J x-J x_{0}\right\rangle \geq 0
$$

for all $y \in C$.

Lemma 2.5. ([2, 6, 11]) Let E be a reflexive, strictly convex and smooth Banach space, let C be a nonempty closed convex subset of E and let $x \in E$. Then

$$
\phi\left(y, \Pi_{C} x\right)+\phi\left(\Pi_{C} x, x\right) \leq \phi(y, x)
$$

for all $y \in C$.
Lemma 2.6. ([10]) Let C be a closed convex subset of a uniformly convex Banach space. Then for each $r>0$, there exists a strictly increasing convex continuous function $\gamma:[0, \infty) \rightarrow[0, \infty)$ such that $\gamma(0)=0$ and

$$
\gamma\left(\left\|T\left(\sum_{j=0}^{n} \lambda_{j} x_{j}\right)-\sum_{j=0}^{n} \lambda_{j} T x_{j}\right\|\right) \leq \max _{0 \leq j<k \leq n}\left(\left\|x_{j}-x_{k}\right\|-\left\|T x_{j}-T x_{k}\right\|\right)
$$

for all $n \in N,\left\{\lambda_{i}\right\}_{i=0}^{n} \in \Delta^{n},\left\{x_{i}\right\}_{i=0}^{n} \subset C \bigcap B_{r}$ and $T \in \operatorname{Lip}(C, 1)$, where $\Delta^{n}=\left\{\left\{\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}: 0 \leq \lambda_{i}(0 \leq i \leq n)\right.$ and $\left.\sum_{i=0}^{n} \lambda_{i}=1\right\}, B_{r}=\{z \in E:$ $\|z\| \leq r\}$ and $\operatorname{Lip}(C, 1)$ is the set of all nonexpansive mappings from C into E.

Let E be a reflexive, strictly convex, smooth Banach space and let J be the duality mapping from E into E^{*}. Then J^{-1} is also single-valued, one-to-one, surjective, and it is the duality mapping from E^{*} into E. We make use of the following mapping V studied in Alber [1]:

$$
\begin{equation*}
V\left(x, x^{*}\right)=\|x\|^{2}-2\left\langle x, x^{*}\right\rangle+\left\|x^{*}\right\|^{2} \tag{2.5}
\end{equation*}
$$

for all $x \in E$ and $x^{*} \in E^{*}$. In other words, $V\left(x, x^{*}\right)=\phi\left(x, J^{-1}\left(x^{*}\right)\right)$ for all $x \in E$ and $x^{*} \in E^{*}$. For each $x \in E$, the mapping g defined by $g\left(x^{*}\right)=V\left(x, x^{*}\right)$ for all $x^{*} \in E^{*}$ is a continuous, convex function from E^{*} into R. We know the following lemma [1]:

Lemma 2.7. ([1]) Let E be a reflexive, strictly convex, smooth Banach space and let V be as in (2.5). Then

$$
V\left(x, x^{*}\right)+2\left\langle J^{-1}\left(x^{*}\right)-x, y^{*}\right\rangle \leq V\left(x, x^{*}+y^{*}\right)
$$

for all $x \in E$ and $x^{*}, y^{*} \in E^{*}$.
An operator A of C into E^{*} is said to be hemicontinuous if for all $x, y \in C$, the mapping f of $[0,1]$ into E^{*} defined by $f(t)=A(t x+(1-t) y)$ is continuous with respect to the weak* topology of E^{*}. We denote by $N_{C}(v)$ the normal cone for C at a point $v \in C$, that is,

$$
N_{C}(v)=\left\{x^{*} \in E^{*}:\left\langle v-y, x^{*}\right\rangle \geq 0 \text { for all } y \in C\right\}
$$

We know the following theorem [12]:
Theorem 2.8. (See Rockafellar [12]) Let C be a nonempty, closed convex subset of a Banach space E and let A be a monotone, hemicontinuous operator of C into E^{*}. Let $T \subset E \times E^{*}$ be an operator defined as follows:

$$
T v=\left\{\begin{aligned}
A v+N_{C}(v), & v \in C \\
\emptyset, & v \bar{\in} C .
\end{aligned}\right.
$$

Then T is maximal monotone and $T^{-1} 0=V I(C, A)$.
Lemma 2.9. ([6]) Let C be a nonempty, closed convex subset of a Banach space E and let A be a monotone, hemicontinuous operator of C into E^{*}. Then

$$
V I(C, A)=\{u \in C:\langle v-u, A v\rangle \geq 0 \text { for all } v \in C\}
$$

It is obvious from Lemma 2.9 that the set $V I(C, A)$ is a closed convex subset of C.

3. Main results

Theorem 3.1. Let E be a 2-uniformly convex, uniformly smooth Banach space. Let C be a nonempty, closed convex subset of E. Assume that A is an operator of C into E^{*} that satisfies the conditions (A1) - (A3). Assume that T is a nonexpansive mapping from C into itself such that $F=F(T) \bigcap V I(C, A) \neq \emptyset$. The sequence $\left\{x_{n}\right\}$ is defined by

$$
\left\{\begin{align*}
x_{0} & \in C \quad \text { chosen arbitrarily } \tag{3.1}\\
y_{n} & =J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J \Pi_{C}\left(J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)\right)\right) \\
\bar{C}_{n} & =\overline{c o}\left\{z \in C:\|z-T z\| \leq t_{n}\left\|x_{n}-T x_{n}\right\|\right\} \\
\tilde{C}_{n} & =\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
C_{n} & =\bar{C}_{n} \bigcap \tilde{C_{n}} \\
Q_{n} & =\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =\Pi_{C_{n} \cap Q_{n}} x_{0},
\end{align*}\right.
$$

where $\left\{\beta_{n}\right\}$ and $\left\{t_{n}\right\}$ satisfy: $0 \leq \beta_{n}<1$, and $\limsup \beta_{n}<1,\left\{t_{n}\right\} \subset(0,1)$ and $\lim _{n \rightarrow \infty} t_{n}=0$. If $\left\{\lambda_{n}\right\}$ is chosen so that $\lambda_{n} \stackrel{n \rightarrow \infty}{\in}[a, b]$ for some a, b with $0<a<b<c^{2} \alpha / 2$, then the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$, where $\frac{1}{c}$ is the 2 -uniformly convexity constant of E.

Proof. From the definition of C_{n} and Q_{n}, it is obvious that $C_{n} \bigcap Q_{n}$ is closed and convex for each $n \in N \bigcup\{0\}$. Next, we show that $F \subset C_{n} \bigcap Q_{n}$ for all $n \in N \bigcup\{0\}$. Put $u_{n}=J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)$ for every $n \in N \bigcup\{0\}$. Let $p \in F$. It holds from Lemmas 2.5 and 2.7 that

$$
\begin{align*}
\phi\left(p, \Pi_{C} u_{n}\right) \leq & \phi\left(p, u_{n}\right) \\
= & V\left(p, J x_{n}-\lambda_{n} A x_{n}\right) \\
\leq & V\left(p,\left(J x_{n}-\lambda_{n} A x_{n}\right)+\lambda_{n} A x_{n}\right) \\
& -2\left\langle J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)-p, \lambda_{n} A x_{n}\right\rangle \tag{3.2}\\
= & V\left(p, J x_{n}\right)-2 \lambda_{n}\left\langle u_{n}-p, A x_{n}\right\rangle \\
= & \phi\left(p, x_{n}\right)-2 \lambda_{n}\left\langle x_{n}-p, A x_{n}\right\rangle+2\left\langle u_{n}-x_{n},-\lambda_{n} A x_{n}\right\rangle
\end{align*}
$$

for every $n \in N \bigcup\{0\}$. From the condition(A1) and $p \in V I(C, A)$, we have

$$
\begin{align*}
-2 \lambda_{n}\left\langle x_{n}-p, A x_{n}\right\rangle & =-2 \lambda_{n}\left\langle x_{n}-p, A x_{n}-A p\right\rangle-2 \lambda_{n}\left\langle x_{n}-p, A p\right\rangle \\
& \leq-2 \lambda_{n} \alpha\left\|A x_{n}-A p\right\|^{2} \tag{3.3}
\end{align*}
$$

for every $n \in N \bigcup\{0\}$. By Lemma 2.2 and the condition(A3), we also have

$$
\begin{align*}
2\left\langle u_{n}-x_{n},-\lambda_{n} A x_{n}\right\rangle & =2\left\langle J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)-J^{-1} J x_{n},-\lambda_{n} A x_{n}\right\rangle \\
& \leq 2\left\|J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)-J^{-1}\left(J x_{n}\right)\right\|\left\|\lambda_{n} A x_{n}\right\| \\
& \leq \frac{4}{c^{2}}\left\|J x_{n}-\lambda_{n} A x_{n}-J x_{n}\right\|\left\|\lambda_{n} A x_{n}\right\| \tag{3.4}\\
& =\frac{4}{c^{2}} \lambda_{n}^{2}\left\|A x_{n}\right\|^{2} \\
& \leq \frac{4}{c^{2}} \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2} .
\end{align*}
$$

Therefore, from (3.3), (3.4) and (3.2), we have

$$
\begin{equation*}
\phi\left(p, \Pi_{C} u_{n}\right) \leq \phi\left(p, x_{n}\right)+2 a\left(\frac{2}{c^{2}} b-\alpha\right)\left\|A x_{n}-A p\right\|^{2} \tag{3.5}
\end{equation*}
$$

Then, by the convexity of $\|\cdot\|^{2}$ and (3.5), we have

$$
\begin{align*}
\phi\left(p, y_{n}\right)= & \|p\|^{2}-2\left\langle p, \beta_{n} J x_{n}+\left(1-\beta_{n}\right) J \Pi_{C} u_{n}\right\rangle \\
& +\left\|\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J \Pi_{C} u_{n}\right\|^{2} \\
\leq & \|p\|^{2}-2 \beta_{n}\left\langle p, J x_{n}\right\rangle-2\left(1-\beta_{n}\right)\left\langle p, J \Pi_{C} u_{n}\right\rangle+\beta_{n}\left\|x_{n}\right\|^{2} \\
& +\left(1-\beta_{n}\right)\left\|\Pi_{C} u_{n}\right\|^{2} \tag{3.6}\\
= & \beta_{n} \phi\left(p, x_{n}\right)+\left(1-\beta_{n}\right) \phi\left(p, \Pi_{C} u_{n}\right) \\
\leq & \phi\left(p, x_{n}\right)+\left(1-\beta_{n}\right) 2 a\left(\frac{2}{c^{2}} b-\alpha\right)\left\|A x_{n}-A p\right\|^{2} \\
\leq & \phi\left(p, x_{n}\right) .
\end{align*}
$$

Thus, we have $p \in \tilde{C_{n}}$. It is obvious that $p \in \bar{C}_{n}$. Therefore we obtain $F \subset C_{n}$ for each $n \in N \bigcup\{0\}$. Using the same argument presented in the proof of [11, Theorem 3.1;pp.261-262] we have $F \subset C_{n} \bigcap Q_{n}$ for each $n \in N \bigcup\{0\}$. This implies that $\left\{x_{n}\right\}$ is well defined. It follows from the definition of Q_{n} and lemma 2.4 that $x_{n}=\Pi_{Q_{n}} x_{0}$. Using $x_{n}=\Pi_{Q_{n}} x_{0}$ and lemma 2.5, we have

$$
\phi\left(x_{n}, x_{0}\right) \leq \phi\left(p, x_{0}\right)-\phi\left(p, x_{n}\right) \leq \phi\left(p, x_{0}\right)
$$

for each $p \in F \subset Q_{n}$ for each $n \in N \bigcup\{0\}$. Therefore, $\phi\left(x_{n}, x_{0}\right)$ is bounded. Moreover, from (2.4), we have that $\left\{x_{n}\right\}$ is bounded.

Since $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0} \in Q_{n}$, and $x_{n}=\Pi_{Q_{n}} x_{0}$, we have $\phi\left(x_{n}, x_{0}\right) \leq$ $\phi\left(x_{n+1}, x_{0}\right)$ for each $n \in N \bigcup\{0\}$. Therefore, $\left\{\phi\left(x_{n}, x_{0}\right)\right\}$ is nondecreasing. So there exists the limit of $\phi\left(x_{n}, x_{0}\right)$. From the lemma 2.5, we have

$$
\phi\left(x_{n+1}, x_{n}\right) \leq \phi\left(x_{n+1}, x_{0}\right)-\phi\left(x_{n}, x_{0}\right)
$$

for each $n \in N \bigcup\{0\}$. This implies that $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0$. Since $x_{n+1}=$ $\Pi_{C_{n}} \cap Q_{n} x_{0} \in C_{n} \subset \tilde{C}_{n}$, from the definition of \tilde{C}_{n}, we also have

$$
\phi\left(x_{n+1}, y_{n}\right) \leq \phi\left(x_{n+1}, x_{n}\right)
$$

for each $n \in N \bigcup\{0\}$. Tending $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, y_{n}\right)=0$. Using lemma 2.3, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

From $\left\|x_{n}-y_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|$, we have

$$
\begin{equation*}
\left\|x_{n}-y_{n}\right\| \rightarrow 0, \quad(n \rightarrow \infty) \tag{3.8}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|J x_{n+1}-J y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|J x_{n+1}-J x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|J x_{n}-J y_{n}\right\|=0 \tag{3.9}
\end{equation*}
$$

Therefore, for each $p \in F$, we have

$$
\begin{align*}
\phi\left(p, x_{n}\right)-\phi\left(p, y_{n}\right) & =2\left\langle p, J y_{n}-J x_{n}\right\rangle+\left\|x_{n}\right\|^{2}-\left\|y_{n}\right\|^{2} \\
& \leq 2\|p\|\left\|J y_{n}-J x_{n}\right\|+\left(\left\|x_{n}\right\|-\left\|y_{n}\right\|\right)\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right) \\
& \rightarrow 0 \tag{3.10}
\end{align*}
$$

From (3.6), we have

$$
-\left(1-\beta_{n}\right) 2 a\left(\frac{2}{c^{2}} b-\alpha\right)\left\|A x_{n}-A p\right\|^{2} \leq \phi\left(p, x_{n}\right)-\phi\left(p, y_{n}\right)
$$

By (3.10) and $\limsup _{n \rightarrow \infty} \beta_{n}<1$, we have

$$
\begin{equation*}
\left\|A x_{n}-A p\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.11}
\end{equation*}
$$

From lemmas 2.5 and 2.7, and (3.4), for each $n \in N \bigcup\{0\}$, we have

$$
\begin{aligned}
\phi\left(x_{n}, \Pi_{C} u_{n}\right) \leq \phi\left(x_{n}, u_{n}\right)= & \phi\left(x_{n}, J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)\right) \\
= & V\left(x_{n}, J x_{n}-\lambda_{n} A x_{n}\right) \\
\leq & V\left(x_{n}, J x_{n}-\lambda_{n} A x_{n}+\lambda_{n} A x_{n}\right) \\
& -2\left\langle J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)-x_{n}, \lambda_{n} A x_{n}\right\rangle \\
= & \phi\left(x_{n}, x_{n}\right)+2\left\langle u_{n}-x_{n},-\lambda_{n} A x_{n}\right\rangle \\
= & 2\left\langle u_{n}-x_{n},-\lambda_{n} A x_{n}\right\rangle \\
\leq & \frac{4}{c^{2}} \lambda_{n}^{2}\left\|A x_{n}-A p\right\|^{2}
\end{aligned}
$$

By (3.11), we get

$$
\begin{equation*}
\phi\left(x_{n}, \Pi_{C} u_{n}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.12}
\end{equation*}
$$

Applying lemma 2.3, we obtain from (3.12) that

$$
\begin{equation*}
\left\|x_{n}-\Pi_{C} u_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{3.13}
\end{equation*}
$$

Since J is uniformly norm-to-norm continuous on bounded sets, we have

$$
\begin{equation*}
\left\|J \Pi_{C} u_{n}-J x_{n}\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{3.14}
\end{equation*}
$$

On the other hand, since $x_{n+1} \in C_{n} \subset \bar{C}_{n}$ and $t_{n}>0$, there exist $m \in N$, $\left\{\lambda_{i}\right\} \in \Delta^{m}$ and $\left\{z_{i}\right\}_{i=0}^{m} \subset C$ such that

$$
\begin{equation*}
\left\|x_{n+1}-\sum_{i=0}^{m} \lambda_{i} z_{i}\right\|<t_{n} \text { and }\left\|z_{i}-T z_{i}\right\| \leq t_{n}\left\|x_{n}-T x_{n}\right\| \text { for all } i \in\{0,1, \cdots, m\} \tag{3.15}
\end{equation*}
$$

Put $r_{0}=2 \sup _{n \geq 0}\left\|x_{n}-u\right\|$, where $u=\Pi_{F} x_{0}$. It follows from Lemma 2.6 and (3.15) that

$$
\begin{aligned}
\left\|x_{n+1}-T x_{n+1}\right\| \leq & \left\|x_{n+1}-\sum_{i=0}^{m} \lambda_{i} z_{i}\right\|+\left\|\sum_{i=0}^{m} \lambda_{i}\left(z_{i}-T z_{i}\right)\right\| \\
& +\left\|\sum_{i=0}^{m} \lambda_{i} T z_{i}-T\left(\sum_{i=0}^{m} \lambda_{i} z_{i}\right)\right\|+\left\|T\left(\sum_{i=0}^{m} \lambda_{i} z_{i}\right)-T x_{n+1}\right\| \\
\leq & \left(2+r_{0}\right) t_{n}+\gamma^{-1}\left(\max _{0 \leq i<j \leq m}\left(\left\|z_{i}-z_{j}\right\|-\left\|T z_{i}-T z_{j}\right\|\right)\right) \\
\leq & \left(2+r_{0}\right) t_{n}+\gamma^{-1}\left(\max _{0 \leq i<j \leq m}\left(\left\|z_{i}-T z_{i}\right\|+\left\|z_{j}-T z_{j}\right\|\right)\right) \\
\leq & \left(2+r_{0}\right) t_{n}+\gamma^{-1}\left(2 r_{0} t_{n}\right) .
\end{aligned}
$$

This gives us that $\left\|x_{n+1}-T x_{n+1}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since T is nonexpansive, T is demiclosed. So, we have that if $\left\{x_{n_{i}}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup \hat{x}$, then $\hat{x} \in F(T)$.

We next prove $\hat{x} \in V I(C, A)$. from (3.13), we have $\Pi_{C} u_{n} \rightharpoonup \hat{x}$. Let $S \subset$ $E \times E^{*}$ be an operator as follows:

$$
S v=\left\{\begin{aligned}
A v+N_{C}(v), & v \in C, \\
\emptyset, & v \bar{\in} C .
\end{aligned}\right.
$$

By Theorem 2.8, S is maximal monotone and $S^{-1} 0=V I(C, A)$. Let $(v, w) \in$ $G(S)$. Since $w \in S v=A v+N_{C}(v)$, we have $w-A v \in N_{C}(v)$. From $\Pi_{C} u_{n} \in C$, we get

$$
\begin{equation*}
\left\langle v-\Pi_{C} u_{n}, w-A v\right\rangle \geq 0 \tag{3.16}
\end{equation*}
$$

On the other hand, from lemma 2.4, we have $\left\langle v-\Pi_{C} u_{n}, J \Pi_{C} u_{n}-J u_{n}\right\rangle \geq 0$ and hence

$$
\begin{equation*}
\left\langle v-\Pi_{C} u_{n}, \frac{J x_{n}-J \Pi_{C} u_{n}}{\lambda_{n}}-A x_{n}\right\rangle \leq 0 \tag{3.17}
\end{equation*}
$$

Then it holds from (3.16) and (3.17) that

$$
\begin{aligned}
\left\langle v-\Pi_{C} u_{n}, w\right\rangle \geq & \left\langle v-\Pi_{C} u_{n}, A v\right\rangle \\
\geq & \left\langle v-\Pi_{C} u_{n}, A v\right\rangle+\left\langle v-\Pi_{C} u_{n}, \frac{J x_{n}-J \Pi_{C} u_{n}}{\lambda_{n}}-A x_{n}\right\rangle \\
= & \left\langle v-\Pi_{C} u_{n}, A v-A x_{n}\right\rangle+\left\langle v-\Pi_{C} u_{n}, \frac{J x_{n}-J \Pi_{C} u_{n}}{\lambda_{n}}\right\rangle \\
= & \left\langle v-\Pi_{C} u_{n}, A v-A \Pi_{C} u_{n}\right\rangle+\left\langle v-\Pi_{C} u_{n}, A \Pi_{C} u_{n}-A x_{n}\right\rangle \\
& +\left\langle v-\Pi_{C} u_{n}, \frac{J x_{n}-J \Pi_{C} u_{n}}{\lambda_{n}}\right\rangle \\
\geq & -\left\|v-\Pi_{C} u_{n}\right\| \frac{\left\|\Pi_{C} u_{n}-x_{n}\right\|}{\alpha}-\left\|v-\Pi_{C} u_{n}\right\| \frac{\left\|J \Pi_{C} u_{n}-J x_{n}\right\|}{a} \\
\geq & -M\left(\frac{\left\|\Pi_{C} u_{n}-x_{n}\right\|}{\alpha}+\frac{\left\|J \Pi_{C} u_{n}-J x_{n}\right\|}{a}\right),
\end{aligned}
$$

for every $n \in N \bigcup\{0\}$, where $M=\sup \left\{\left\|v-\Pi_{C} u_{n}\right\|: n \in N \bigcup\{0\}\right\}$. Taking $n=n_{i}$, from (3.13) and (3.14), we have $\langle v-\hat{x}, w\rangle \geq 0$ as $i \rightarrow \infty$. By the maximality of S, we obtain $\hat{x} \in S^{-1} 0$ and hence $\hat{x} \in V I(C, A)$. Therefore, $\hat{x} \in F$.

Finally, we show that $x_{n} \rightarrow \Pi_{F} x_{0}$. Let $\tilde{x}=\Pi_{F} x_{0}$. For any $n \in N$, from $x_{n+1}=\Pi_{C_{n} \cap Q_{n}} x_{0}$ and $\tilde{x} \in F \subset C_{n} \bigcap Q_{n}$, we have $\phi\left(x_{n+1}, x_{0}\right) \leq \phi\left(\tilde{x}, x_{0}\right)$. On the other hand, from weakly lower semicontinuity of the norm, we have

$$
\begin{aligned}
\phi\left(\hat{x}, x_{0}\right) & =\|\hat{x}\|^{2}-2\left\langle\hat{x}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2} \\
& \leq \liminf _{i \rightarrow \infty}\left(\left\|x_{n_{i}}\right\|^{2}-2\left\langle x_{n_{i}}, J x_{0}\right\rangle+\left\|x_{0}\right\|^{2}\right) \\
& =\liminf _{i \rightarrow \infty} \phi\left(x_{n_{i}}, x_{0}\right) \\
& \leq \limsup _{i \rightarrow \infty} \phi\left(x_{n_{i}}, x_{0}\right) \\
& \leq \phi\left(\tilde{x}, x_{0}\right) .
\end{aligned}
$$

From the definition of $\Pi_{F} x_{0}$, we obtain $\hat{x}=\tilde{x}$ and hence, $\lim _{i \rightarrow \infty} \phi\left(x_{n_{i}}, x_{0}\right)=$ $\phi\left(\hat{x}, x_{0}\right)$. So, we have $\lim _{i \rightarrow \infty}\left\|x_{n_{i}}\right\|=\|\hat{x}\|$. Using the K-K property of E, we obtain $x_{n_{i}} \rightarrow \Pi_{F} x_{0}$. Since $x_{n_{i}}$ is an arbitrary convergent subsequence of $\left\{x_{n}\right\}$, we can conclude that $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} x_{0}$.

Corollary 3.2. Let E be a 2-uniformly convex, uniformly smooth Banach space. Let A be an α-inverse-strongly monotone operator of E into itself and T be a nonexpansive mapping of E into itself such that $F(T) \bigcap A^{-1} 0 \neq \emptyset$.

Suppose that the sequence $\left\{x_{n}\right\}$ is defined by

$$
\left\{\begin{align*}
x_{0} & \in E \quad \text { chosen arbitrarily } \tag{3.1}\\
y_{n} & =J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right)\left(J x_{n}-\lambda_{n} A x_{n}\right)\right) \\
\bar{C}_{n} & =\overline{c o}\left\{z \in C:\|z-T z\| \leq t_{n}\left\|x_{n}-T x_{n}\right\|\right\} \\
\tilde{C}_{n} & =\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
C_{n} & =\bar{C}_{n} \bigcap \tilde{C}_{n} \\
Q_{n} & =\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =\Pi_{C_{n}} \cap Q_{n} x_{0}
\end{align*}\right.
$$

where $\left\{\beta_{n}\right\}$ and $\left\{t_{n}\right\}$ satisfy: $0 \leq \beta_{n}<1$, and $\limsup \beta_{n}<1$, $\left\{t_{n}\right\} \subset(0,1)$ and $\lim _{n \rightarrow \infty} t_{n}=0$. If $\left\{\lambda_{n}\right\}$ is chosen so that $\lambda_{n} \in[a, b]$ for some a, b with $0<$ $a<b<c^{2} \alpha / 2$, then the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(T)} \cap A^{-1}{ }_{0} x_{0}$, where $\frac{1}{c}$ is the 2 -uniformly convexity constant of E.
Proof. In Theorem 3.1, we put $C=E$. By $\Pi_{E}=I$, we have $y_{n}=J^{-1}\left(\beta_{n} J x_{n}+\right.$ $\left.\left(1-\beta_{n}\right)\left(J x_{n}-\lambda_{n} A x_{n}\right)\right)=J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J \Pi_{E}\left(J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)\right)\right)$ for every $n=0,1,2 \ldots$ From Remark 2.2 and Lemma 2.4, We also have $V I(E, A)=$ $A^{-1} 0$ and $\|A y\|=\|A y-0\|=\|A y-A u\|$ for all $y \in E$ and $u \in A^{-1} 0$. So, by using Theorem 3.1, $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(T) \cap A^{-1} 0} x_{0}$.
Remark 3. In Theorem 4.2 of [5], Iiduka and Takahashi proved the following conclusion:

Let H be a real Hilbert space. Let A be an α-inverse-strongly monotone operator of H into itself and T be a nonexpansive mapping of H into itself such that $F(T) \bigcap A^{-1} 0 \neq \emptyset$. Suppose $x_{1}=x \in H$ and $\left\{x_{n}\right\}$ is given by

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) T\left(x_{n}-\lambda_{n} A x_{n}\right)
$$

for every $n=1,2, \ldots$, where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1)$ and $\left\{\lambda_{n}\right\}$ is a sequence in $[0,2 \alpha]$. If $\left\{\alpha_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are chosen so that $\lambda_{n} \in[a, b]$ for some a, b with $0<a<b<2 \alpha$,

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty \text { and } \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty
$$

then $\left\{x_{n}\right\}$ converges strongly to $P_{F(T)} \cap A^{-1} 0 x$.
Therefore, it's obvious that Corollary 3.1 generalize the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping from Hilbert spaces to 2-uniformly convex, uniformly smooth Banach spaces without assuming any additional conditions on operators A and T. Furthermore, these conditions that $0 \leq \beta_{n}<1, \limsup _{n \rightarrow \infty} \beta_{n}<1,\left\{t_{n}\right\} \subset(0,1)$ and $\lim _{n \rightarrow \infty} t_{n}=0$ on control sequences $\left\{\beta_{n}\right\}, \stackrel{n \rightarrow \infty}{\left\{t_{n}\right\}}$ are easier to implement than these conditions that
$\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty, \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty$ assumed by Theorem 4.2 of [5]. In addition, in Corollary 3.1, we obtain that the strong convergence point of $\left\{x_{n}\right\}$ is $\Pi_{F(T)} \cap_{A^{-1} 0} x_{0}$. If $E=H$, then $\Pi_{F(T) \cap A^{-1} 0} x_{0}=P_{F(T) \cap A^{-1} 0} x_{0}$. Hence, this is the same as the convergent result of Theorem 4.2 of [5].

Corollary 3.3. Let E be a 2-uniformly convex, uniformly smooth Banach space. Let C be a nonempty, closed convex subset of E. Assume that T is a nonexpansive mapping from C into itself such that $F(T) \neq \emptyset$. Suppose that the sequence $\left\{x_{n}\right\}$ is defined by

$$
\left\{\begin{align*}
x_{0} & \in C \quad \text { chosen arbitrarily, } \tag{3.1}\\
\bar{C}_{n} & =\overline{c o}\left\{z \in C:\|z-T z\| \leq t_{n}\left\|x_{n}-T x_{n}\right\|\right\} \\
Q_{n} & =\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =\Pi_{\bar{C}_{n}} \cap Q_{n} x_{0}
\end{align*}\right.
$$

where $\left\{t_{n}\right\}$ satisfies: $\left\{t_{n}\right\} \subset(0,1)$ and $\lim _{n \rightarrow \infty} t_{n}=0$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F(T)} x_{0}$.

Proof. Taking $A \equiv 0$ in Theorem 3.1, we have $y_{n}=x_{n}, V I(C, A)=C, \tilde{C}_{n}=C$ and $C_{n}=\bar{C}_{n}$. Then, it is easy to obtain the desired result.

Corollary 3.4. Let E be a 2-uniformly convex, uniformly smooth Banach space. Let C be a nonempty, closed convex subset of E. Assume that A is an operator of C into E^{*} that satisfies the conditions $(A 1)-(A 3)$. The sequence $\left\{x_{n}\right\}$ is defined by

$$
\left\{\begin{align*}
x_{0} & \in C \quad \text { chosen arbitrarily } \tag{3.1}\\
y_{n} & =J^{-1}\left(\beta_{n} J x_{n}+\left(1-\beta_{n}\right) J \Pi_{C}\left(J^{-1}\left(J x_{n}-\lambda_{n} A x_{n}\right)\right)\right) \\
C_{n} & =\left\{z \in C: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\} \\
Q_{n} & =\left\{z \in C:\left\langle x_{n}-z, J x_{0}-J x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =\Pi_{C_{n} \cap Q_{n}} x_{0},
\end{align*}\right.
$$

where $\left\{\beta_{n}\right\}$ satisfies: $0 \leq \beta_{n}<1$, and $\limsup _{n \rightarrow \infty} \beta_{n}<1$. If $\left\{\lambda_{n}\right\}$ is chosen so that $\lambda_{n} \in[a, b]$ for some a, b with $0<a<b<c^{2} \alpha / 2$, then the sequence $\left\{x_{n}\right\}$ converges strongly to $\Pi_{V I(C, A)} x_{0}$, where $\frac{1}{c}$ is the 2 -uniformly convexity constant of E.
Proof. Taking $T=I$ (the identity mapping) in Theorem 3.1, we have $\bar{C}_{n}=C$ and $C_{n}=\tilde{C}_{n}$. Then, it is easy to obtain the desired result.

Remark 4. Corollary 3.3 generalize theorem 3.1 of [6] from weak convergence to strong convergence.

References

[1] Ya. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in: Lecture Notes Pure Appl. Math., vol. 178, Dekker, New York, 1996, pp. 15-50.
[2] Ya. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54.
[3] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), 463-482.
[4] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.
[5] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Analysis 61 (2005), 341-350.
[6] H. Iiduka and W. Takahashi, Weak convergence of a projection algorithm for variational inequalities in a Banach space, J. Math. Anal. Appl. 339 (2008), 668-679.
[7] H. Iiduka, W. Takahashi and M. Toyoda, Approximation of solutions of variational inequalities for monotone mappings, Panamer. Math. J. 14 (2004), 49-61.
[8] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517.
[9] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal. 6 (1998), 313-344.
[10] S. Matsushita and W. Takahashi, Approximating fixed points of nonexpansive mappings in a Banach space by metric projections, Applied Mathematics and Computation 196 (2008), 422-425.
[11] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, Journal of Approximation Theory 134 (2005), 257-266.
[12] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
[13] Y. Takahashi, K. Hashimoto and M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal. 3 (2002), 267-281.

Ying LiU
College of Mathematics and Computer
Hebei University
No. 180, Wusi eastRoad, Baoding, Hebei, China, 071002
E-mail address: ly_cyh2007@yahoo.com.cn

[^0]: Received August 16, 2010; Revised October 25, 2010; Accepted November 20, 2010.
 2000 Mathematics Subject Classification. 47H09, 47H05, 47J25.
 Key words and phrases. Nonexpansive mapping, generalized projection, inverse-stronglymonotone mapping, variational inequality, p-uniformly convex.

 This work was financially supported by the Natural Science Youth Foundation of Hebei Education Commission (No. 2010110) and the Natural Science Youth Foundation of Hebei Province (No. A2010000191).

