• Title/Summary/Keyword: Ultrasonic Excitation

Search Result 81, Processing Time 0.034 seconds

Study on Enhancements to Ultrasonic Data Imaging Using Full Matrix Capture Technique (Full Matrix Capture 기법을 통한 초음파신호 영상화 향상 연구)

  • Lee, Tae-Hun;Yoon, Byung-Sik;Lee, Jeong-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.299-306
    • /
    • 2015
  • A conventional phased array system can control an ultrasonic beam electronically by adjusting the excitation time delay of individual elements in a multi-element probe and produce an ultrasonic image. In Contrast, full matrix capture (FMC) is a data acquisition process that allows receiving ultrasonic signals from one single shot of the phased array transducer element through all the other elements and captures the complete dataset from every possible transmit-receive combination. This FMC data can be used to create the ultrasonic image in post processing. It is possible to produce not only images equivalent to conventional phased array image but also total focusing method (TFM) images with improved resolution and sharpness, which is virtually focused at any point in a region of interest. In this paper, the system that can perform FMC by using a conventional phased array instrument is developed, and a study was conducted on the imaging algorithms to reconstruct sector B-scan and TFM images from FMC dataset.

Characteristics of Particle Separation in Suspension using an Ultrasonic Standing Wave

  • Shin, Beom-Soo;Danao, Mary-Grace C.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • Purpose: Particle separation in solution is one of important process in a unit operation as well as in an extract preparation for biosensors. Contrary to centrifuge-type of mesh-type filter, using an ultrasonic standing wave make the filtering process continuous and free from maintenance. It is needed to investigate the characteristics of particle movement in the ultrasonic standing wave field. Methods: Through the computer simulation the effects of major design and driving parameters on the alignment characteristics of particles were investigated, and a cylindrical chamber with up-stream flow type was devised using two circular-shape PZTs on both sides of the chamber, one for transmitting ultrasonic wave and the other for just reflecting it. Then, the system performance was experimentally investigated as well. Results: The speed of a particle to reach pressure-node plane increased as the acoustic pressure and size of particle increased. The maximum allowable up-stream flow rate could be calculated as well. As expected, exact numbers of pressure-node planes were well formed at specific locations according to the wavelength of ultrasonic wave. As the driving frequency of PZT got close to its resonance frequency, the bands of particles were observed clearer, which meant the particles were trapped into narrower space. Higher excitation voltages to the PZT produced a greater acoustic force with which to trap particles in the pressure-node planes, so that the particles gathered could move upwards without disturbing their alignments even at a higher inlet flow rate. Conclusions: This research showed the feasibility of particle separation in solution in the continuous way by an ultrasonic standing wave. Further study is needed to develop a device to collect or harvest those separated particles.

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Replication Characteristics of Micropatterns According to Mold Temperature in Ultrasonic Imprinting (초음파 임프린팅에서 금형온도에 따른 미세패턴의 전사특성 연구)

  • Min, Kyeong Bin;Park, Jong Han;Park, Chang Yong;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • Ultrasonic imprinting is a novel process for replicating micropatterns on thermoplastic polymer substrates with low energy consumption and short cycle time. The polymer substrate is softened by the frictional heat and repetitive deformation energy under ultrasonic excitation; thus, a number of micropatterns are replicated on the softened polymer substrate. In the present work, the effect of mold temperature on the replication characteristics of ultrasonic imprinting is investigated. The temperature change in the patterned region is measured by varying the mold temperature. Numerical simulation is then performed for investigating pattern replication characteristics under various mold temperatures. In addition, pattern replication ratio and uniformity are compared through various experimental measurements. Through the results of these comparisons, it is found that the mold temperature has a significant positive effect on the replication characteristics of ultrasonic imprinting.

Reconstruction of Dispersive Lamb Waves in Time Plates Using a Time Reversal Method

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2008
  • Time reversal (TR) of nondispersive body waves has been used in many applications including ultrasonic NDE. However, the study of the TR method for Lamb waves on thin structures is not well established. In this paper, the full reconstruction of the input signal is investigated for dispersive Lamb waves by introducing a time reversal operator based on the Mindlin plate theory. A broadband and a narrowband input waveform are employed to reconstruct the $A_0$ mode of Lamb wave propagations. Due to the frequency dependence of the TR process of Lamb waves, different frequency components of the broadband excitation are scaled differently during the time reversal process and the original input signal cannot be fully restored. This is the primary reason for using a narrowband excitation to enhance the flaw detectability.

Micro Ultrasonic Elliptical Vibration Cutting (I) The Generation of a Elliptical Vibration Cutting Motion for Micro Ultrasonic Machining (미세 초음파 타원궤적 진동절삭 (I) 미세 초음파 가공을 위한 타원 절삭경로 생성)

  • Loh Byung-Gook;Kim Gi Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.190-197
    • /
    • 2005
  • For precise micro-grooving and surface machining, a mechanism for creating elliptical vibration cutting (EVC) motion is proposed which uses two parallel piezoelectric actuators. And based on its kinematical analysis, variations of EVC path are investigated as a function of dimensional changes in the mechanism, phase difference and amplitude of excitation sinusoidal voltages. Using the proposed PZT mechanism, various types of two dimensional EVC paths including one dimensional vibration cutting path along the cutting direction and thrust direction can be easily obtained by changing the phase lag, the amplitude of the piezoelectric actuators, and the dimension of the mechanism.

Analysis of Broadband Ultrasonic Field Response and its Application to the Design of Focused Annular Array System (광대역 초음파 장 응답의 해석과 집속된 Annular Array 영상 시스템 설계에의 응용)

  • Rho, Gyoung-Tae;Song, Tae-Kyung;Park, Song-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1252-1255
    • /
    • 1987
  • In this paper an approach for the analysis of the transient field response of radially symmetric transducer due to a wideband ultrasonic pulse is presented, which is based on a development of Green's function and applies the linear system theory to obtain an analytic expression for the impulse response of an annulus with a planar or spherical geometry. For the focused annular array, the impulse responses of the indivisual annuli are convolved with the delayed excitation pulse, and then summed to obtain the resultant response of the array. This process is very effective in the study of the various focusing abilities of the annular array. For illustration, the field distribution of a five element annular array is treated in detail for several focusing system.

  • PDF

Elastic modulus measurement of thin films using laser generated guided ultrasonic waves (레이저 초음파 기법을 이용한 박막 탄성계수 측정)

  • Cho, Seung Hyun;Heo, Taehoon;Ji, Bonggyu;Ahn, Bongyoung;Jang, Gang-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.550-554
    • /
    • 2014
  • Regarding thin films in MEMS/NEMS structures, the exact evaluation of mechanical properties is very essential to enhance the reliability of their design and manufacturing. However, such methods as a tensile test and a resonance test, general methods to measure elastic moduli, cannot be applied to thin films since its thickness is so small. This work concerns guided wave based elastic modulus measurement method. To this end, guided wave excitation and detection system using a pulsed laser and a laser interferometry has been established. Also an elastic modulus extraction algorithm from the measured guided wave signal was developed. Finally, it was applied to actual thin film structures such as Ni-Si and Al-Si multilayers. From experimental results, we confirm that the proposed method has considerable feasibility to measure elastic properties of thin films.

  • PDF

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Dib, Gerges;Roy, Surajit;Ramuhalli, Pradeep;Chai, Jangbom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.867-876
    • /
    • 2019
  • Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process (염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성)

  • Hwangbo, Young;Lim, Hyo Ryoung;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.