DOI QR코드

DOI QR Code

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system

  • Received : 2018.09.18
  • Accepted : 2018.12.06
  • Published : 2019.04.25

Abstract

Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.

Keywords

References

  1. J. Frouin, T.E. Matikas, J.K. Na, S. Sathish, In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cyclic loading, in: Nondestructive Evaluation Techniques for Aging Infrastructures &Manufacturing, vol. 3585, 1999, pp. 107-116, https://doi.org/10.1117/12.339838.
  2. J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, J. Acoust. Soc. Am. 120 (3) (2006) 1266-1273, https://doi.org/10.1121/1.2221557.
  3. J. Zhang, F.-Z. Xuan, Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime, J. Appl. Phys. 115 (20) (2014) 204906, https://doi.org/10.1063/1.4879415.
  4. J. Herrmann, J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, M.F. Savage, Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves, J. Appl. Phys. 99 (12) (2006) 124913, https://doi.org/10.1063/1.2204807.
  5. S.V. Walker, J.-Y. Kim, J. Qu, L.J. Jacobs, Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves, NDT E Int. 48 (2012) 10-15, https://doi.org/10.1016/j.ndteint.2012.02.002.
  6. K.-Y. Jhang, K.-C. Kim, Evaluation of material degradation using nonlinear acoustic effect, Ultrasonics 37 (1) (1999) 39-44, https://doi.org/10.1016/S0041-624X(98)00045-6.
  7. K.-y. Jhang, Applications of nonlinear ultrasonics to the NDE of material degradation, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 47 (3) (2000) 540-548, https://doi.org/10.1109/58.842040.
  8. J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures, Int. J. Fatig. 23 (2001) 487-490, https://doi.org/10.1016/S0142-1123(01)00162-1.
  9. R.K. Oruganti, R. Sivaramanivas, T.N. Karthik, V. Kommareddy, B. Ramadurai, B. Ganesan, E.J. Nieters, M.F. Gigliotti, M.E. Keller, M.T. Shyamsunder, Quantification of fatigue damage accumulation using nonlinear ultrasound measurements, Int. J. Fatig. 29 (9-11) (2007) 2032-2039, https://doi.org/10.1016/j.ijfatigue.2007.01.026.
  10. J.L. Blackshire, S. Sathish, J.K. Na, J. Frouin, Nonlinear laser ultrasonic measurements of localized fatigue damage, in: Review of Progress in Quantitative Nondestructive Evaluation, vol. 22, 2003, pp. 1479-1488, https://doi.org/10.1063/1.1570305.
  11. J. Frouin, S. Sathish, T.E. Matikas, J.K. Na, Ultrasonic linear and nonlinear behavior of fatigue Ti-6Al-4V, J. Mater. Res. 14 (4) (1999) 1295-1298, https://doi.org/10.1557/JMR.1999.0176.
  12. L. Sun, S.S. Kulkarni, J.D. Achenbach, S. Krishnaswamy, Technique to minimize couplant-effect in acoustic nonlinearity measurements, J. Acoust. Soc. Am. 120 (5) (2006) 2500-2505, https://doi.org/10.1121/1.2354023.
  13. S. Liu, A.J. Croxford, S.A. Neild, Z. Zhou, Effects of experimental variables on the nonlinear harmonic generation technique, IEEE transactions 26 on ultrasonics, ferroelectrics, and frequency control 58 (7) (2011) 1442-1451, https://doi.org/10.1109/TUFFC.2011.1963.
  14. G. Dace, R.B. Thompson, L. Brasche, D. Rehbein, O. Buck, Nonlinear acoustics, a technique to determine microstructural changes in materials, in: Review of Progress in Quantitative Nondestructive Evaluation, 1991, pp. 1685-1692.
  15. A. Kumar, C.J. Torbet, J.W. Jones, T.M. Pollock, Nonlinear ultrasonics for in situ damage detection during high frequency fatigue, J. Appl. Phys. 106 (2) (2009), 024904, https://doi.org/10.1063/1.3169520.
  16. W.T. Yost, J.H. Cantrell, Anomalous nonlinearity parameters of solids at low acoustic drive amplitudes, Appl. Phys. Lett. 94 (2) (2009), 021905, https://doi.org/10.1063/1.3068490.
  17. W.D. Cash, W. Cai, Dislocation contribution to acoustic nonlinearity:The effect of orientation-dependent line energy, J. Appl. Phys. 109 (1) (2011), 014915, https://doi.org/10.1063/1.3530736.
  18. J.H. Cantrell, Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation, J. Appl. Phys. 100 (6) (2006), 063508, https://doi.org/10.1063/1.2345614.

Cited by

  1. Optical in-situ analysis method for fatigue cracks and its application in fatigue initiation and growth study on steels with different microstructures vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab5fa2
  2. Measurement of the Acoustic Non-Linearity Parameter of Materials by Exciting Reversed-Phase Rayleigh Waves in Opposite Directions vol.20, pp.7, 2020, https://doi.org/10.3390/s20071955