Browse > Article
http://dx.doi.org/10.1016/j.net.2018.12.003

In-situ fatigue monitoring procedure using nonlinear ultrasonic surface waves considering the nonlinear effects in the measurement system  

Dib, Gerges (The Pacific Northwest National Laboratory)
Roy, Surajit (The Pacific Northwest National Laboratory)
Ramuhalli, Pradeep (The Pacific Northwest National Laboratory)
Chai, Jangbom (Ajou University)
Publication Information
Nuclear Engineering and Technology / v.51, no.3, 2019 , pp. 867-876 More about this Journal
Abstract
Second harmonic generation using nonlinear ultrasonic waves have been shown to be an early indicator of possible fatigue damage in nuclear power plant components. This technique relies on measuring amplitudes, making it highly susceptible to variations in transducer coupling and instrumentation. This paper proposes an experimental procedure for in-situ surface wave nonlinear ultrasound measurements on specimen with permanently mounted transducers under high cycle fatigue loading without interrupting the experiment. It allows continuous monitoring and minimizes variation due to transducer coupling. Moreover, relations describing the effects of the measurement system nonlinearity including the effects of the material transfer function on the measured nonlinearity parameter are derived. An in-situ high cycle fatigue test was conducted using two 304 stainless steel specimens with two different excitation frequencies. A comprehensive analysis of the nonlinear sources, which result in variations in the measured nonlinearity parameters, was performed and the effects of the system nonlinearities are explained and identified. In both specimens, monotonic trend was observed in nonlinear parameter when the value of fundamental amplitude was not changing.
Keywords
Nonlinear ultrasound; Surface wave; In-situ monitoring; High-cycle fatigue;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Liu, A.J. Croxford, S.A. Neild, Z. Zhou, Effects of experimental variables on the nonlinear harmonic generation technique, IEEE transactions 26 on ultrasonics, ferroelectrics, and frequency control 58 (7) (2011) 1442-1451, https://doi.org/10.1109/TUFFC.2011.1963.   DOI
2 G. Dace, R.B. Thompson, L. Brasche, D. Rehbein, O. Buck, Nonlinear acoustics, a technique to determine microstructural changes in materials, in: Review of Progress in Quantitative Nondestructive Evaluation, 1991, pp. 1685-1692.
3 A. Kumar, C.J. Torbet, J.W. Jones, T.M. Pollock, Nonlinear ultrasonics for in situ damage detection during high frequency fatigue, J. Appl. Phys. 106 (2) (2009), 024904, https://doi.org/10.1063/1.3169520.   DOI
4 J. Herrmann, J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, M.F. Savage, Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves, J. Appl. Phys. 99 (12) (2006) 124913, https://doi.org/10.1063/1.2204807.   DOI
5 S.V. Walker, J.-Y. Kim, J. Qu, L.J. Jacobs, Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves, NDT E Int. 48 (2012) 10-15, https://doi.org/10.1016/j.ndteint.2012.02.002.   DOI
6 K.-Y. Jhang, K.-C. Kim, Evaluation of material degradation using nonlinear acoustic effect, Ultrasonics 37 (1) (1999) 39-44, https://doi.org/10.1016/S0041-624X(98)00045-6.   DOI
7 K.-y. Jhang, Applications of nonlinear ultrasonics to the NDE of material degradation, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 47 (3) (2000) 540-548, https://doi.org/10.1109/58.842040.   DOI
8 W.T. Yost, J.H. Cantrell, Anomalous nonlinearity parameters of solids at low acoustic drive amplitudes, Appl. Phys. Lett. 94 (2) (2009), 021905, https://doi.org/10.1063/1.3068490.   DOI
9 W.D. Cash, W. Cai, Dislocation contribution to acoustic nonlinearity:The effect of orientation-dependent line energy, J. Appl. Phys. 109 (1) (2011), 014915, https://doi.org/10.1063/1.3530736.   DOI
10 J.H. Cantrell, Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation, J. Appl. Phys. 100 (6) (2006), 063508, https://doi.org/10.1063/1.2345614.   DOI
11 J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures, Int. J. Fatig. 23 (2001) 487-490, https://doi.org/10.1016/S0142-1123(01)00162-1.   DOI
12 R.K. Oruganti, R. Sivaramanivas, T.N. Karthik, V. Kommareddy, B. Ramadurai, B. Ganesan, E.J. Nieters, M.F. Gigliotti, M.E. Keller, M.T. Shyamsunder, Quantification of fatigue damage accumulation using nonlinear ultrasound measurements, Int. J. Fatig. 29 (9-11) (2007) 2032-2039, https://doi.org/10.1016/j.ijfatigue.2007.01.026.   DOI
13 J.L. Blackshire, S. Sathish, J.K. Na, J. Frouin, Nonlinear laser ultrasonic measurements of localized fatigue damage, in: Review of Progress in Quantitative Nondestructive Evaluation, vol. 22, 2003, pp. 1479-1488, https://doi.org/10.1063/1.1570305.
14 J. Frouin, S. Sathish, T.E. Matikas, J.K. Na, Ultrasonic linear and nonlinear behavior of fatigue Ti-6Al-4V, J. Mater. Res. 14 (4) (1999) 1295-1298, https://doi.org/10.1557/JMR.1999.0176.   DOI
15 L. Sun, S.S. Kulkarni, J.D. Achenbach, S. Krishnaswamy, Technique to minimize couplant-effect in acoustic nonlinearity measurements, J. Acoust. Soc. Am. 120 (5) (2006) 2500-2505, https://doi.org/10.1121/1.2354023.   DOI
16 J. Zhang, F.-Z. Xuan, Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime, J. Appl. Phys. 115 (20) (2014) 204906, https://doi.org/10.1063/1.4879415.   DOI
17 J. Frouin, T.E. Matikas, J.K. Na, S. Sathish, In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cyclic loading, in: Nondestructive Evaluation Techniques for Aging Infrastructures &Manufacturing, vol. 3585, 1999, pp. 107-116, https://doi.org/10.1117/12.339838.   DOI
18 J.-Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, J. Acoust. Soc. Am. 120 (3) (2006) 1266-1273, https://doi.org/10.1121/1.2221557.   DOI