Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.5.270

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process  

Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lim, Hyo Ryoung (Department of Fusion Chemical Engineering, Hanyang University)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.5, 2017 , pp. 270-275 More about this Journal
Abstract
Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.
Keywords
phosphor; $ZrO_2:Eu^{3+}$; NaCl; ultrasonic spray pyrolysis; photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. A. Hppe, Angew. Chem. Int. Ed., 48, 3572 (2009).   DOI
2 H. Terraschke and C. Wickleder, Chem. Rev., 115, 11352 (2015).   DOI
3 P. Dorenbos, J. Lumin., 104, 239 (2003).   DOI
4 S. Neeraj, N. Kijima and A. K. Cheetham, Chem. Phys. Lett., 387, 2 (2004).   DOI
5 I. P. Sahu, P. Chandrakar, R. N. Baghel, D. P. Bisen, N. Brahme and R. K. Tamrakar, J. Alloys. Compd., 649, 1329 (2015).   DOI
6 R. K. Tamrakar, D. P. Bisen, K. Upadhyay and I. P. Sahu, J. Phys. Chem. C, 119, 21072 (2015).   DOI
7 S. D. Meetei and S. D. Singh, J. Alloys Compd., 587, 143 (2014).   DOI
8 L. Yu, H. Liu and M. Nogami, Opt. Mater., 32, 1139 (2010).   DOI
9 P. Ghosh and A. Patra, Langmuir, 22, 6321 (2006).   DOI
10 T. Ninjbadgar, G. Garnweitner, A. Brger, L. M. Goldenberg, O. V. Sakhno and J. Stumpe, Adv. Func. Mater., 19, 1819 (2009).   DOI
11 J. Fu, N. N. Daanen, E. E. Rugen, D. P. Chen and S. E. Skrabalak, Chem. Mater., 29, 62 (2017).   DOI
12 J. H. Bang and K. S. Suslick, Adv. Mater., 22, 1039 (2010).   DOI
13 S. F. Wang, F. Gu, M. K. Lu, Z. S. Yang, G. J. Zhou, H. P. Zhang, Y. Y. Zhou and S. M. Wang, Opt. Mater., 28, 1222 (2006).   DOI