DOI QR코드

DOI QR Code

염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process

  • 황보영 (서울과학기술대학교 신소재공학과) ;
  • 임효령 (한양대학교 융합화학공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lim, Hyo Ryoung (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2017.03.20
  • 심사 : 2017.03.30
  • 발행 : 2017.05.27

초록

Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.

키워드

참고문헌

  1. H. A. Hppe, Angew. Chem. Int. Ed., 48, 3572 (2009). https://doi.org/10.1002/anie.200804005
  2. H. Terraschke and C. Wickleder, Chem. Rev., 115, 11352 (2015). https://doi.org/10.1021/acs.chemrev.5b00223
  3. P. Dorenbos, J. Lumin., 104, 239 (2003). https://doi.org/10.1016/S0022-2313(03)00078-4
  4. S. Neeraj, N. Kijima and A. K. Cheetham, Chem. Phys. Lett., 387, 2 (2004). https://doi.org/10.1016/j.cplett.2003.12.130
  5. I. P. Sahu, P. Chandrakar, R. N. Baghel, D. P. Bisen, N. Brahme and R. K. Tamrakar, J. Alloys. Compd., 649, 1329 (2015). https://doi.org/10.1016/j.jallcom.2015.06.011
  6. R. K. Tamrakar, D. P. Bisen, K. Upadhyay and I. P. Sahu, J. Phys. Chem. C, 119, 21072 (2015). https://doi.org/10.1021/acs.jpcc.5b06443
  7. S. D. Meetei and S. D. Singh, J. Alloys Compd., 587, 143 (2014). https://doi.org/10.1016/j.jallcom.2013.10.159
  8. L. Yu, H. Liu and M. Nogami, Opt. Mater., 32, 1139 (2010). https://doi.org/10.1016/j.optmat.2010.03.020
  9. P. Ghosh and A. Patra, Langmuir, 22, 6321 (2006). https://doi.org/10.1021/la0604883
  10. T. Ninjbadgar, G. Garnweitner, A. Brger, L. M. Goldenberg, O. V. Sakhno and J. Stumpe, Adv. Func. Mater., 19, 1819 (2009). https://doi.org/10.1002/adfm.200801835
  11. J. Fu, N. N. Daanen, E. E. Rugen, D. P. Chen and S. E. Skrabalak, Chem. Mater., 29, 62 (2017). https://doi.org/10.1021/acs.chemmater.6b02660
  12. J. H. Bang and K. S. Suslick, Adv. Mater., 22, 1039 (2010). https://doi.org/10.1002/adma.200904093
  13. S. F. Wang, F. Gu, M. K. Lu, Z. S. Yang, G. J. Zhou, H. P. Zhang, Y. Y. Zhou and S. M. Wang, Opt. Mater., 28, 1222 (2006). https://doi.org/10.1016/j.optmat.2005.08.003