• 제목/요약/키워드: Ultra high strength steel

검색결과 295건 처리시간 0.029초

1.5GPa급 자동차용 고강도강의 레이저 용접부 특성평가 (Evaluation of Laser Welding Characteristics of 1.5GPa Grade Ultra High Strength Steel for Automotive Application)

  • 김용;박기영;이경돈;정준교;김동화
    • 한국레이저가공학회지
    • /
    • 제13권4호
    • /
    • pp.1-6
    • /
    • 2010
  • Recently the use of ultra high strength steels (UHSS) in structural and safety component is rapidly increasing in the automotive industry. For example, 1.5GPa grade hot stamping with die-quenching of boron steel 22MnB5 could apply crash-resistant parts such as bumpers and pillars. The development of laser welding process of hot stamping steels, fundamental bead-on-plate welding and lap joint welding test were carried out using 3kW Nd:YAG laser. Local hardening & HAZ softening occurred in hot stamping steel as a result of metallurgical change caused by the welding heat input in the Nd:YAG laser welding process. The size of soft zones in the hot stamping steel was related to the welding heat input, being smaller at high speeds which generated a smaller heat input. Also in the case of lap joint design structure, same welded characteristics were shown. The HAZ softening degree was controlled to ensure the joint strength.

  • PDF

열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향 (Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel)

  • 강창룡;권민기;김창호
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.212-217
    • /
    • 2012
  • This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

초고강도 콘크리트를 이용한 반응 사출 금형에 관한 융합 연구 (A Convergence Study on the Reaction Injection Mold Using Ultra High Strength Concrete)

  • 정재동;김홍석
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.211-217
    • /
    • 2020
  • 일반적으로 금형은 소재 부품 분야에서 제품의 대량 생산에 널리 이용되는 중요한 생산 도구이다. 그러나 최근 다품종 소량생산의 확산에 따라 보다 효율적이고 경제적인 금형에 대한 요구가 증가하고 있으며, 본 연구에서는 금형 재료로서 초고강도 콘크리트의 적용 가능성을 모색해 보고자 한다. 초고강도 콘크리트는 80MPa 이상의 압축강도를 갖는 콘크리트로서 금속에 비해 저렴하고 무게가 가벼우며 조형이 용이하다는 장점을 가지고 있다. 초고강도 콘크리트가 비록 일반 금형 재료인 공구강에 비해 강도는 낮지만 상대적으로 낮은 응력이 발생하는 성형 공정에 사용된다면 금형 재료로서 충분히 활용 가능하다고 판단하였다. 따라서 본 연구에서는 플라스틱 저압 생산공정의 하나인 폴리우레탄 반응사출 성형공정용 시작 금형에 초고강도 콘크리트를 적용해 보았으며, 금형 제작 및 성형 과정을 통하여 금형 소재로서의 가능성과 특징을 고찰해 보았다.

섬유 조합에 따른 초고성능 콘크리트의 인장거동 (Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers)

  • 최정일;고경택;이방연
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.49-56
    • /
    • 2015
  • 초고성능 콘크리트는 높은 강도와 유동성을 갖는 우수한 재료 특성을 나타내는 콘크리트이다. 그러나 고연성 시멘트 복합체에 비하여 낮은 연성을 나타낸다. 이 연구에서는 강섬유와 마이크로섬유의 조합이 초고성능 콘크리트의 인장거동에 미치는 영향을 조사하였다. 이를 위하여 강섬유와 폴리에틸렌, 폴리비닐알코올, 현무암섬유 조합에 따라 4가지 초고성능 콘크리트 배합을 결정하였고, 인장거동을 평가하기 위하여 직접인장 실험을 수행하였다. 또한 마이크로섬유가 제조과정에서 의도하지 않은 과도한 기포를 생성하는지를 확인하기 위하여 밀도실험을 수행하였다. 실험결과 인장강도가 높은 폴리에틸렌섬유는 초고성능 콘크리트의 인장거동을 향상시키는데 효과적임을 확인하였고, 현무암섬유는 초고성능 콘크리트의 균열강도 및 인장강도를 증가시키는데 효과적임을 확인하였다. 또한 마이크로섬유가 의도하지 않은 기포를 생성하지 않는다는 것도 확인하였다.

초고강도 강섬유 보강 콘크리트의 휨특성에 관한 연구 (A Study on the flexural Behavior of Ultra-Strength Steel Fiber Reinforced Concrete)

  • 류금성;박정준;강수태;고경택;김성욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.333-336
    • /
    • 2005
  • This paper presents a comparative evaluation of eight different types of steel fibers used as reinforcing material in concrete beams. The fibers which used ultra-strength steel fiber reinforced concrete were fiber length of 30 to 60mm, aspect ratio of 43 to 86, W/B ratio 0.16 to 0.30, fiber types of both ends hooked and straight shape and fiber volume fraction of 1 to 5$\%$. As for the test results, it estimated the influence of fiber volume, length and aspect ratio on the mechanical properties of high toughness concrete, the mechanical properties improved according to increase fiber volume, to increase aspect ratio and to long fiber length. And the resonable fiber volume in high toughness concrete was analyzed 2$\%$ based on the results of mechanical properties.

  • PDF

UHPCC를 사용한 전단보강이 없는 I형 보의 거동에 대한 실험적 연구 (Experimental Study of Behavior in I Shaped RC Beams without stirrups using Ultra High Performance Cementitious Composite)

  • 강수태;박정준;김성욱;한상묵;전상은;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.57-60
    • /
    • 2004
  • Recently, Many researchers are interested in ultra-high performance cementitious compostie characterized by high strength and high durability and trying to apply for structural members. In this paper, twelves fiber-reinforced UHPCC with high compressive strength over 150MPa I shaped beam without stirrups were tested under various conditicns to investigate the mechanical behavior of UHPCC I shaped beam without stirrups. Variables considered in this study includes steel fiber volume fraction, reinforcememt steel ratio, and shear spar ratio.

  • PDF

펄라이트 조직을 갖는 초고강도 볼트의 수소취성 저항성 (Resistance to Hydrogen Embrittlement of Ultra-high Strength Pearlitic Bolt)

  • 유아정;이영국
    • 열처리공학회지
    • /
    • 제36권1호
    • /
    • pp.15-21
    • /
    • 2023
  • Recently, ultra-high strength bolts have been developed for weight lightening of a vehicle and fuel efficiency. However, some amount of diffusible H is absorbed into the bolt during its manufacturing process so that H embrittlement (HE) often occurs particularly in high strength bolts with a tempered martensitic microstructure. This brings attention to ultra-high strength pearlitic bolts with a high resistance to HE. Therefore, in this study the HE resistance of the 1.6 GPa grade pearlitic bolt was evaluated through tightening tests and slow strain rate tests (SSRTs), and fracture surfaces of failed bolts were comparatively observed. A critical H content for the tightening test turned out to be ~0.23-0.35 mass ppm. The bolt with a diffusible H content of ~0.35 mass ppm was fractured during the tightening test, showing a quasi-cleavage fracture surface, indicating the occurrence of HE. In addition, the bolt underwent premature elastic failure during the SSRT. This implies that the HE resistance of high strength bolts can be evaluated by both tightening test and SSRT.

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향 (Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet)

  • 박진성;윤덕빈;성환구;김성진
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.295-307
    • /
    • 2021
  • Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.