Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.3.212

Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel  

Kang, C.Y. (Dept. of Metallurgical Engineering, Pukyong National University)
Kwon, M.K. (Materials Research Institute, SeohanENP Co.)
Kim, C.H. (Materials Research Institute, Seohan Industries Co.)
Publication Information
Korean Journal of Metals and Materials / v.50, no.3, 2012 , pp. 212-217 More about this Journal
Abstract
This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.
Keywords
ultra high carbon steel; forging ratio; proeutectoid and eutectoide cementite; network and acicular cementite; spheroidizing of cementite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. L. Zhang, X. J. Sun, and H. Dong, Mater. Sci. Eng. A 432, 324 (2006).   DOI   ScienceOn
2 H. Sunada, J. Wadsworth, J.Lim, and O. D. Sherby, Mater SCI. Eng. 38, 35 (1979).   DOI   ScienceOn
3 O. D. Sherby, T. Oyama, D. W. Kum, B. Walser, and J. Wadsworth, J.Met. 37, 50 (1985).
4 S. P. Dudra and Y. T. Im, J. Mater. Process. Technol. 21, 143 (1990).   DOI   ScienceOn
5 S. P. Dudra and Y. T. Im, Int. J. Mach. Tools & Manuf. 23, 222 (2002).
6 B. V. Kiefer and K. N. Shah, Trans. ASME, J. Eng. Mat. and Tech. 112, 477 (1991).
7 E. Erman, N. M. Medei, A. R. Roesch, and D. C. Shah, J. Mechanical Working Technology 19, 165 (1989).   DOI   ScienceOn
8 E. Erman, N. M. Medei, A. R. Roesch, and D. C. Shah, J. Mechanical Working Technology 19, 195 (1989).   DOI   ScienceOn
9 B. Y. Choi, I. S. Kim, B. R. Chang, and Y. H. Lee, J. Kor. Inst. Met. & Mater, 41, 211 (2003).
10 J. R. Cho, W. B. Bae, Y. H. Kim, S. S. Choi, and D. K. Kim, J. Mater. Process. Technol. 80, 161 (1998).
11 S. C. Hong, H. C. Kang, J. C. Ahn, H. S. Hwang, S. J. Lee, K. J. Lee, J. J. Park, and K. S. Lee, J. Kor. Inst. Met. & Mater. 42, 82 (2004).
12 J. Wadsworth and O. D. Sherby, J. Mater. Sci. 13, 2645 (1978).   DOI   ScienceOn