DOI QR코드

DOI QR Code

Effect of Microstructure Change on the Mechanical Properties in Hot-Forged Ultra High Carbon Steel

열간 단조에 의한 고탄소강의 미세조직 변화가 기계적 성질에 미치는 영향

  • Kang, C.Y. (Dept. of Metallurgical Engineering, Pukyong National University) ;
  • Kwon, M.K. (Materials Research Institute, SeohanENP Co.) ;
  • Kim, C.H. (Materials Research Institute, Seohan Industries Co.)
  • 강창룡 (부경대학교 금속공학과) ;
  • 권민기 (서한ENP 금속소재연구소 연구개발팀) ;
  • 김창호 (서한산업 금속소재연구소)
  • Received : 2011.12.02
  • Published : 2012.03.25

Abstract

This study was carried out to investigate the effect of the hot forging ratio on the microstructure and mechanical properties of ultra high carbon steel. The microstructure of ultra high carbon steel with 1.5%wt.C consisted of a proeutectoid cementite network and acicular microstructure in pearlite matrix. With increasing hot forging ratio, the volume and thickness of the network and acicular proeutectoid cementite decreased. Lamella spacing and the thickness of eutectoid cementite decreased with increasing hot forging raito, and were broken up into particle shapes, which then became spheroidized. When the forging ratio was over 65%, the network and acicula shape of the as-cast state disappeared. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up to 50%, and then rapidly increased with the increase of the forging ratio.

Keywords

References

  1. S. L. Zhang, X. J. Sun, and H. Dong, Mater. Sci. Eng. A 432, 324 (2006). https://doi.org/10.1016/j.msea.2006.06.057
  2. H. Sunada, J. Wadsworth, J.Lim, and O. D. Sherby, Mater SCI. Eng. 38, 35 (1979). https://doi.org/10.1016/0025-5416(79)90029-6
  3. O. D. Sherby, T. Oyama, D. W. Kum, B. Walser, and J. Wadsworth, J.Met. 37, 50 (1985).
  4. S. P. Dudra and Y. T. Im, J. Mater. Process. Technol. 21, 143 (1990). https://doi.org/10.1016/0924-0136(90)90003-D
  5. S. P. Dudra and Y. T. Im, Int. J. Mach. Tools & Manuf. 23, 222 (2002).
  6. B. V. Kiefer and K. N. Shah, Trans. ASME, J. Eng. Mat. and Tech. 112, 477 (1991).
  7. E. Erman, N. M. Medei, A. R. Roesch, and D. C. Shah, J. Mechanical Working Technology 19, 165 (1989). https://doi.org/10.1016/0378-3804(89)90003-X
  8. E. Erman, N. M. Medei, A. R. Roesch, and D. C. Shah, J. Mechanical Working Technology 19, 195 (1989). https://doi.org/10.1016/0378-3804(89)90004-1
  9. B. Y. Choi, I. S. Kim, B. R. Chang, and Y. H. Lee, J. Kor. Inst. Met. & Mater, 41, 211 (2003).
  10. J. R. Cho, W. B. Bae, Y. H. Kim, S. S. Choi, and D. K. Kim, J. Mater. Process. Technol. 80, 161 (1998).
  11. S. C. Hong, H. C. Kang, J. C. Ahn, H. S. Hwang, S. J. Lee, K. J. Lee, J. J. Park, and K. S. Lee, J. Kor. Inst. Met. & Mater. 42, 82 (2004).
  12. J. Wadsworth and O. D. Sherby, J. Mater. Sci. 13, 2645 (1978). https://doi.org/10.1007/BF02402751