Browse > Article
http://dx.doi.org/10.14773/cst.2021.20.5.295

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet  

Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University)
Yun, Duck Bin (Department of Advanced Materials Engineering, Sunchon National University)
Seong, Hwan Goo (POSCO Technical Research Laboratories)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.20, no.5, 2021 , pp. 295-307 More about this Journal
Abstract
Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.
Keywords
Ultra high-strength steel; Tempering; Corrosion; Hydrogen diffusion; Iron carbide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Krawczyk, P. Bala, and J. Pacyna, The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni, Journal of Microscopy, 237, 411 (2010). Doi: https://doi.org/10.1111/j.1365-2818.2009.03275.x.   DOI
2 H. Miyamoto, M. Yuasa, M. Rifai, and H. Fujiwara, Corrosion behavior of severely deformed pure and single-phase materials, Materials transaction, 60, 1243 (2019). Doi: https://doi.org/10.2320/matertrans.MF201935   DOI
3 J. S. Park, H. G. Seong, and S. J. Kim, Effect of heat treatment conditions on corrosion and hydrogen diffusion behaviors of ultra-strong steel used for automotive applications, Corrosion Science and Technology, 18, 267 (2019). Doi: https://doi.org/10.14773/CST.2020.19.2.100   DOI
4 S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579   DOI
5 J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution contatining chlorides and acetates, Electrochemica Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4   DOI
6 H. K. D. H. Bhadeshia, Prevention of hydrogen embrittlement in steels, ISIJ International, 56, 24 (2016). Doi: http://dx.doi.org/10.2355/isijinternational.ISIJINT-2015-430   DOI
7 B. D. Craig, On the elastic interaction of hydrogen with precipitates in lath martensite, Acta Metallurgica, 25, 1027 (1977). Doi: https://doi.org/10.1016/0001-6160(77)90131-6   DOI
8 W. Y. Choo and J. Y. Lee, Hydrogen trapping phenomena in carbon steel, Journal of Materials Science, 17, 1930 (1982). Doi: https://doi.org/10.1007/BF00540409   DOI
9 A. McNabb and P. K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transaction of the Metallurgical Society of AIME, 277, 618 (1963).
10 I. M. Bernstein, The effect of hydrogen on the deformation of iron, Scripta Metallurgica, 8, 343 (1974). Doi: https://doi.org/10.1016/0036-9748(74)90136-7   DOI
11 S. J. Kim, E. H. Hwang, J. S. Park, S. M. Ryu, D. W. Yun, and H. G. Seong, Inhibiting hydrogen embrittlement in ultra-strong steels for automotive application by Ni-alloying, npj Materials Degradation, 3, 12 (2019). Doi: https://doi.org/10.1038/s41529-019-0074-5   DOI
12 H. Xu, X. Xia, L. Hua, Y. Sun, and Y. Dai, Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.24Cr-1Mo steel by SSRT method, Engineering Failure Analysis, 19, 43 (2012). Doi: https://doi.org/10.1016/j.engfailanal.2011.08.008   DOI
13 W. S. Yang, J. W. Seo, and S. H. Ahn, A study on hydrogen embrittlement research on automotive steel sheets, Corrosion Science and Technology, 17, 193 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.4.193   DOI
14 S. A. J. Forsik, P. R. D. D. Castillo, Encyclopedia of Iron, Steel, and Their Alloys, 1st ed., pp. 2169 - 2181, Taylor & Francis (2016). Doi: https://doi.org/10.1081/E-EISA120052026
15 G. W. Hong and J. Y. Lee, The interaction of hydrogen and the cementite-ferrite interface in carbon steel, Journal of Materials Science, 18, 271 (1983). Doi: https://doi.org/10.1007/-BF00543835   DOI
16 S. Thomas, N. Ott, R. F. Schaller, J. A. Yuwono, P. Volovitch, G. Sundararajan, N. V. Medhekar, K. Ogle, J. R. Scully, and N. Birbilis, The effect of absorbed hydrogen on the dissolution of steel, Heliyon, 3, e00209 (2017). Doi: http://dx.doi.org/10.1016/j.heliyon.-2016.e00209   DOI
17 J. S. Park, H. J. Lee, and S. J. Kim, Electrochemical corrosion and hydrogen diffusion behaviors of Zn and Al coated hot-press forming steel sheets in chloride containing environments, Korean Journal of Materials Research, 28, 286 (2018). Doi: http://dx.doi.org/-10.3740/MRSK.2018.28.5.286   DOI
18 C. Wagner and W. Traud, The original formulation of the mixed potential concept and the basis theory of corrosion of a pure metal, Zeitschrift Fur Elektrochemie und Angewandte Physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702   DOI
19 M. Hunkel, J. Dong, J. Epp, D. Kaiser, S. Dietrich, V. Schulze, A. Rajaei, B. Hallstedt, and C. Broeckmann, Comparative study of the tempering behaviors of different martensitic steels by mean of in-situ diffractometry and dilatometry, Materials, 13, 5058 (2020). Doi: https://doi.org/10.3390/ma13225058   DOI
20 D. Clover, B. Kinsella, B. Pejcic, and R. de Marco, The influence of microstructure on the corrosion rate of various carbon steel, Journal of Applied Electrochemistry, 35, 139 (2005). Doi: https://doi.org/10.1007/s10800-004-6207-7   DOI
21 S. Brauser, L. A. Pepke, G. Weber, and M. Rethmeier, Deformation behavior of spot-welded high strength steels for automotive application, Materials Science Engineering: A, 527, 7099 (2010). Doi: https://doi.org/10.1016/j.msea.2010.07.091   DOI
22 D. A. Lopez, W. H. Schreiner, S. R. de Sanchez, and S. N. Simison, The influence of carbon steel microstructure on corrosion layers an XPS and SEM characterization, Applied Surface Science, 207, 69 (2003). Doi: https://doi.org/10.1016/s0169-4332(02)01218-7   DOI
23 E. Serra, A. Perujo, and G. Benamati, Influence of traps on the deuterium behavior in the low activation martensitic steels F82H and Batman, Journal of Nuclear Materials, 245, 108 (1997). Doi: https://doi.org/10.1016/S0022-3115(97)00021-4   DOI
24 A. Nazarov, V. Vivier, F. Vucko, and D. Thierry, Effect of tensile stress on the passivity breakdown and repassivation of AISI 304 stainless steel: A scanning kelvin probe and scanning electrochemical microscopy study, Journal of The Electrochemical Society, 166, C3207 (2019). Doi: https://doi.org/10.1149/2.0251911jes   DOI
25 S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.2320/matertrans.M2016222   DOI
26 K. Kiuchi and R. B. McLellan, The solubility and diffusivity of hydrogen in well-annealed and deformed iron, Acta Metallurgica, 31, 961 (1983). Doi: https://doi.org/10.1016/0001-6160(83)90192-X   DOI
27 S. W. Thompson, A two-tilt analysis of electron diffraction patterns from transition-iron-carbide precipitates formed during tempering of 4340 steel, Metallography, Microstructure, and Analysis, 5, 367 (2016). Doi: https://doi.org/10.1007/s13632-016-0302-0   DOI
28 D. Rudomilova, T. Prosek, I. Traxler, J. Faderl, G. Luckeneder, G. S. Aichhorn, and A. Muhr, Critical assessment of the effect of atmospheric corrosion induced hydrogen on mechanical properties of advanced high strength steel, Metals, 11, 44 (2020). Doi: https://doi.org/10.3390/met11010044   DOI
29 X. Zhu, W. Li, T. Y. Hsu, S. Zhou, L. Wang, and X. Jin, Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment, Scripta Materialia, 97, 21 (2015). Doi: https://doi.org/10.1016/j.scriptamat.2014.10.030   DOI
30 S. L. Gibbons, R. A. Abrahams, M. W. Vaughan, R. E. Barber, R. C. Harris, R. Arroyave, and I. Karaman, Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing, Materials Science Engineering: A, 725, 57 (2018). Doi: https://doi.org/10.1016/j.msea.2018.04.086   DOI
31 V. Massardier, M. Goune, D. Fabregue, A. Selouane, T. Douillard, and O. Bouaziz, Evolution of microstructure and strength during the ultra-fast tempering of Fe-Mn-C martensitic steels, Journal of Materials Science, 49, 7782 (2014). Doi: https://doi.org/10.1007/s10853-014-8489-4   DOI
32 E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570   DOI
33 M. Stren and A. L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, Journal of Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496   DOI
34 ISO 17081, Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, Switzerland: ISO Standard (2004).
35 S. V. Brahimi, S. Yue, and K. R. Sriraman, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philosophical Transactions A, 375, 2098 (2017). Doi: https://doi.org/10.1098/rsta.2016.0407   DOI
36 J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel, Corrosion Science and Technology, 17, 242 (2018). Doi: https://doi.org/10.14773/cst.2018.17.5.242   DOI
37 M. M. Islam, C. Zou, A. C. T. V. Duin, and S. Raman, Interaction of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics, 18, 761 (2015). Doi: https://doi.org/10.1039/c5cp06108c   DOI