DOI QR코드

DOI QR Code

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu (Guangdong Provincial Key Laboratory of Durability of Marine Civil Engineering, Shenzhen University) ;
  • Huang, Xinxiong (Guangdong Provincial Key Laboratory of Durability of Marine Civil Engineering, Shenzhen University) ;
  • Li, Weiwen (Guangdong Provincial Key Laboratory of Durability of Marine Civil Engineering, Shenzhen University) ;
  • Zhang, Jiasheng (CCFED the Fifth Construction & Engineering Co., Ltd)
  • Received : 2019.10.30
  • Accepted : 2020.09.22
  • Published : 2020.10.25

Abstract

To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.

Keywords

References

  1. AFGC (2002), Ultra high performance fibre-reinforced concretes. Interim recommendations, Bagneux, France.
  2. AISC (2010), ANSI-AISC 360-10: Specification for Structural Steel Buildings, Chicago, USA.
  3. Alajarmeh, O., Manalo, A., Benmokrane, B., Ferdous, W., Mohammed, A., Abousnina, R., Mohamed, E. and Edoo, A. (2020), "Behavior of circular concrete columns reinforced with hollow composite sections and GFRP bars", Marine Struct., 72, 102785. https://doi.org/10.1016/j.marstruc.2020.102785.
  4. Aoude, H., Hosinieh, M.M., Cook, W.D. and Mitchell, D. (2015), "Behavior of rectangular columns constructed with SCC and steel fibers", J. Struct. Eng., 141(8), 04014191. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001165.
  5. ASTM (2014), ASTM C136 / C136M - 14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, West Conshohocken, PA, USA.
  6. ASTM (2014), ASTM C1611/C1611M-14: Standard test method for slump flow of self-consolidating concrete, West Conshohocken, PA, USA
  7. ASTM E8/E8M - 16A (2016), Standard Test Methods for Tension Testing of Metallic Materials, West Conshohocken, PA, USA
  8. Begum, M., Driver, R.G. and Elwi, A.E. (2013), "Behaviour of partially encased composite columns with high strength concrete", Eng. Struct., 56(1), 1718-1727. https://doi.org/10.1016/j.engstruct.2013.07.040.
  9. Benjamin, G. and Marshall, D. (2008), "Cylinder or Cube Strength Testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete", ACI Mater J., 6(105), 603-609.
  10. Bruhwiler, E. (2016), "Structural UHPFRC":Welcome to the Post-concrete Era, Proceedings of the First International Interactive Symposium on UHPC. Des Moines:Lowa State University. 1-6.
  11. Eurocode 2(2004), Design of concrete strctures, European Committee for Standardisation, Brussels, Belgium.
  12. Eurocode 4(2004), EN 1994-1-1 Design of composite steel and concrete structures, European Committee for Standardisation, Brussels, Belgium.
  13. Eurocode 8(2004), Design of structures for earthquake resistance, European Committee for Standardisation, Brussels,Belgium.
  14. Ellobody, E., Young, B. and Lam, D. (2011), "Eccentrically loaded concrete encased steel composite columns", Thin Wall. Struct. 49(1), 53-65. https://doi.org/10.1016/j.tws.2010.08.006.
  15. Empelmann, M., Teutsch, M. and Steven, G. (2008), Expanding the application range of RC columns by the use of UHPC, Tailor made concrete structures, Taylor & Francis Group, London, 461-468.
  16. Foster, S.J. and Attard, M.M. (1997), "Experimental tests on eccentrically loaded high-strength concrete columns", ACI Struct. J., 94(3), 295-302.
  17. fib Model code for concrete structures 2010 (2013), Lausanne, Switzerlan.
  18. GB/T 31387-2015(2015), Reactive powder concrete, China Standard Publishing House, Beijing, China.
  19. GB50010-2010 (2010), Code for design of concrete structures, China Construction Industry Publishing House, Beijing, China.
  20. Han, B.S. and Shin, S.W. (2006), "Confinement effects of high-strength reinforced concrete tied columns", Int. J. Concr.Struct. M., 18(2), 133-142. https://doi.org/10.4334/IJCSM.2006.18.2E.133.
  21. Hosinieh, M.M., Aoude, H., Cook, W.D. and Mitchell, D. (2015), "Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading", Eng Struct., 99(1), 388-401. https://doi.org/10.1016/j.engstruct.2015.05.009.
  22. Huang, Z.Y., Wang, J.Y., Liew, J.Y.R. and William Marshall, P. (2015), "Lightweight steel-concrete-steel sandwich composite shell subject to punching shear", Ocean Eng., 102, 146-161. https://doi.org/10.1016/j.oceaneng.2015.04.054.
  23. Huang, Z.Y., Huang, X.X., Li, W.W., Mei, L. and Liew, J.Y.R. (2019), "Experimental behavior of VHSC encased composite stub column under compression and end moment", Steel Compos. Struct., 31(1), 69-83. https://doi.org/10.12989/scs.2019.31.1.069.
  24. JGJ 138 (2016), Code for design of composite structure, Ministry of Housing and Urban-Rural Construction of the People's Republic of China, Beijing, China
  25. Kim, C.S., Park, H.G., Chung, K.S. and Choi, I.R. (2012), "Eccentric Axial Load Testing for Concrete-Encased Steel Columns Using 800 MPa Steel and 100 MPa Concrete", J Struct Eng., 138(8), 1019-1031. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000533
  26. Kim, C.S., Park, H.G., Lee, H.J., Choi, I.R. and Chung, K.S. (2017), "Eccentric axial load test for high-strength composite columns of various sectional configurations", J. Struct. Eng., 143(8), 04017075. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001803.
  27. Kusumawardaningsih, Y., Fehling, E. and Ismail, M. (2015), "UHPC compressive strength test specimens: Cylinder or cube?", Procedia Eng., 125, 1076-1080. https://doi.org/10.1016/j.proeng.2015.11.165.
  28. Lai, B., Liew, J.Y.R. and Xiong, M. (2019), "Experimental study on high strength concrete encased steel composite short columns", Constr. Build. Mater., 228, 1-15. https://doi.org/10.1016/j.conbuildmat.2019.08.021.
  29. Lai, B., Richard Liew, J.Y. and Wang, T. (2019), "Buckling behaviour of high strength concrete encased steel composite columns", J. Constr. Steel Res., 154, 27-42. https://doi.org/10.1016/j.jcsr.2018.11.023.
  30. Legeron, F. and Paultre, P. (2003), "Uniaxial confinement model for normal- and high-strength concrete columns", J. Struct. Eng., 129(2), 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241).
  31. Malik, A.R. and Foster, S.J. (2008), "Behaviour of reactive powder concrete columns without steel ties", J. Adv. Concr. Technol., 6(2), 377-386. https://doi.org/10.3151/jact.6.377
  32. Mohammed, A.A., Manalo, A.C., Ferdous, W., Yan, Z.G., Vijay, P.V. and Pettigrew, J. (2020), "Experimental and numerical evaluations on the behaviour of structures repaired using prefabricated FRP composites jacket", Eng Struct., 210, 110358. https://doi.org/10.1016/j.engstruct.2020.110358.
  33. Razvi, S. and Saatcioglu, M. (1999), "Confinement model for high-strength concrete", J. Struct. Eng., 125(3), 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281).
  34. Liew, J.Y.R., Xiong, D.X. and Tran, C.T. (2015), Design Guide for Concrete Filled Tubular Members with High Strength Materials-An Extension of Eurocode 4 Method to C90/105 concrete and S550 Steel, Singapore.
  35. Sharma, U.K., Bhargava, P. and Kaushik, S.K. (2005), "Behavior of confined high strength concrete columns under axial compression", J. Adv. Concr. Technol., 3(2), 267-281. https://doi.org/10.3151/jact.3.267
  36. Sherif, E.T. and Gregory, G.D. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(1009).
  37. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete Part I. Raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088.
  38. Shin, H.O., Min, K.H. and Mitchell, D. (2017), "Confinement of ultra-high-performance fiber reinforced concrete columns", Compos Struct., 176, 124-142. https://doi.org/10.1016/j.compstruct.2017.05.022.
  39. Shin, H.O., Yoon, Y.S., Cook, W.D. and Mitchell, D. (2015), "Effect of confinement on the axial load response of ultrahigh-strength concrete columns", J. Struct. Eng., 141(6), 04014151. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001106.
  40. Shin, H.O., Yoon, Y.S., Lee, S.H., Cook, W.D. and Mitchell, D. (2015), "Effect of steel fibers on the performance of ultrahigh-strength concrete columns", J. Mater. Civil. Eng., 27(4), 04014142. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001091.
  41. Siddika, A., Mamun, M.A.A., Ferdous, W. and Alyousef, R.(2020), "Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review", Eng. Fail. Anal., 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480.
  42. Singh, M., Ali, M.S.M. and Sheikh, A.H. (2015), Structural behaviour of Ultra-High Performance Fibre Reinforced Concrete Columns subjected to eccentric loading, Iabse Symposium Report. Geneva, Switzerland.
  43. Sugano, S., Kimura, H. and Shirai, K. (2007), "Study of new RC structures using ultra-high-strength fiber-reinforced concrete (UFC)", J. Adv. Concr. Technol., 5(2). ttps://doi.org/10.3151/jact.5.133.
  44. Wang, D., Shi, C., Wu, Z., Xiao, J., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete Part II. Hydration, microstructure and properties", Constr. Build. Mater., 96, 368-377. https://doi.org/10.1016/j.conbuildmat.2015.08.095.
  45. Xu, L., Lu, Q., Chi, Y., Yang, Y., Yu, M. and Yan, Y. (2019), "Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber", Constr. Build. Mater., 204, 754-767. https://doi.org/10.1016/j.conbuildmat.2019.01.202.
  46. Xu, S., Wu, C., Liu, Z., Han, K., Su, Y., Zhao, J. and Li, J. (2017), "Experimental investigation of seismic behavior of ultra-high performance steel fiber reinforced concrete columns", Eng Struct., 152, 129-148. https://doi.org/10.1016/j.engstruct.2017.09.007.
  47. Yoo, D.Y. and Banthia, N. (2016), "Mechanical properties of ultra-high-performance fiber-reinforced concrete A review", Cement Concrete Compos. 73, 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001.
  48. Yoo, D.Y. and Banthia, N. (2017), "Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast", Constr. Build. Mater., 149, 416-431. https://doi.org/10.1016/j.conbuildmat.2017.05.136.
  49. Yoo, D.Y. and Yoon, Y.S. (2016), "A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete", Int. J. Concr. Struct. M., 10(2), 125-142. https://doi.org/10.1007/s40069-016-0143-x.
  50. Zhou, X., Yan, B. and Liu, J. (2015), "Behavior of square tubed steel reinforced-concrete (SRC) columns under eccentric compression", Thin Wall. Struct., 91, 129-138. https://doi.org/10.1016/j.tws.2015.01.022.
  51. Zhu, W.Q., Meng, G. and Jia, J.Q. (2014), "Experimental studies on axial load performance of high-strength concrete short columns", Proceedings of the Institution of Civil Engineers-Structures and Buildings.

Cited by

  1. Bond-slip behaviour of H-shaped steel embedded in UHPFRC vol.38, pp.5, 2021, https://doi.org/10.12989/scs.2021.38.5.563