• Title/Summary/Keyword: UV-NIL

Search Result 52, Processing Time 0.027 seconds

UV Nanoimprint Lithography using an Elementwise Patterned Stamp and Pressurized Air (Elementwise Patterned Stamp와 부가압력을 이용한 UV 나노임프린트 리소그래피)

  • Sohn H.;Jeong J.H.;Sim Y.S.;Kim K.D.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.672-675
    • /
    • 2005
  • To imprint 70-nm wide line-patterns, we used a newly developed ultraviolet nanoimprint lithography (UV-NIL) process in which an elementwise patterned stamp (EPS), a large-area stamp, and pressurized air are used to imprint a wafer in a single step. For a single-step UV-NIL of a 4' wafer, we fabricated two identical $5'\times5'\times0.09'(W{\times}L{\times}H)$ quartz EPSs, except that one is with nanopatterns and the other without nanopatterns. Both of them consist of 16 small-area stamps, called elements, each of which is $10\;mm\;\times\;10\;mm$. UV-curable low-viscosity resin droplets were dispensed directly on each element of the EPSs. The volume and viscosity of each droplet are 3.7 nl and 7 cps. Droplets were dispensed in such a way that no air entrapment between elements and wafer occurs. When the droplets were fully pressed between ESP and wafer, some incompletely filled elements were observed because of the topology mismatch between EPS and wafer. To complete those incomplete fillings, pressurized air of 2 bar was applied to the bottom of the wafer for 2 min. Experimental results have shown that nanopatterns of the EPS were successfully transferred to the resin layer on the wafer.

  • PDF

Technology for Roll-based Nanoimprint Lithography Systems (롤 기반 나노임프린트 리소그래피 시스템 기술)

  • Lim, Hyungjun;Lee, Jaejong;Choi, Kee-Bong;Kim, Geehong;Lee, Sunghwi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Roll-based, nanoimprint lithography (Roll-NIL) is one effective method to produce large-area nanopatterns continuously. Systems and processes for Roll-NIL have been developed and studied for more than 15 years. Since the shapes of the stamp and the substrate for Roll-NIL can be plates, films, and rolls, there exist many concepts to design and implement roll-NIL systems. Combinations and variations of contact-methods for variously shaped stamps and substrates are analyzed in this paper. The contact-area can be changed by using soft materials such as polydimethylsiloxane (PDMS) or silicone rubber. Ultraviolet (UV) sources appropriate for the roll-to-plate or roll-to-roll process are introduced. Finally, two roll-to-plate nanoimprint lithography systems are illustrated.

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers (무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조)

  • Park Jun-Hong;Pham Tuan-Anh;Lee Jae-Jong;Kim Dong-Pyo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.407-411
    • /
    • 2006
  • The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

Pressure Distribution by Rubber Roller in Large-area UV Imprinting Lithography Process (대면적 UV 임프린팅 공정에서 고무 롤러에 의한 압력분포)

  • Kim, Nam-Woong;Kim, Kug-Weon;Lee, Woo-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we consider the roll-to-plate type imprinting process. In the process a glass mold, which is placed upon the 2nd generation TFT-LCD glass sized substrate(370${\yen}$470 mm), is rolled by a rubber roller to achieve a uniform residual layer. The pressure distribution on the glass mold by rolling of the rubber roller is crucial information to analyze mold deformation, transferred pattern quality, uniformity of residual layer and so forth. In this paper the quantitative pressure distribution induced by rolling of the rubber roller was calculated with finite element analysis under the assumption of Neo-Hookean hyperelastic constitutive relation. Additionally the numerical results were verified by the experiments.

Sub-100nm Hybrid stamp fabrication by Hot embossing (Hot embossing 공정을 이용한 100nm 급 Hybrid stamp 제작)

  • Hong S.H.;Yang K.Y.;Lee Heon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1168-1170
    • /
    • 2005
  • Nanoimprint Lithography(NIL) has increasingly been recognized as a key manufacturing technology for nanosized feature. One of the most important task for nanoimprint lithography is to provide the imprinting stamp with low price. The Stamp fabricated with Si based material by e-beam lithography, RIE is extremely expensive and its throughput is very limited and PDMS replica is too soft to hold high imprinting pressure.(>5atm) In this study, we present the imprinting stamp which can be easily replicated from original mold and is based on PVC film. Replication of original Si mold to PVC film was done by Hot embossing technique, ($120^{\circ}C$ of Temperature, 20 atm applied) As small as 100nm patterns were successfully transferred into PVC film. The size of stamp was up to 100mm in diameter.

  • PDF

State of the art and technological trend for the nano-imprinting lithography equipment (나노 임프린팅 리소그래피 장비의 기술개발 동향)

  • 이재종;최기봉;정광조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.196-198
    • /
    • 2003
  • Classical lithography in semiconductor employs stepper technologies. Limits of this technology are clearly seen at structures below 100nm. Nano-imprinting lithography is a new method for generating patterns in submicron range at reasonable cost. In order to manufacture nano-imprinting lithography(NIL) equipment, several NIL manufacturers have been developing key technologies for realization of nano-imprinting process, recently. In this paper, we've been describe state-of-the-art and technology trends for nano-imprinting lithography equipments.

  • PDF

Fabrication of a Polymeric Planar Nano-diffraction Grating with Nonuniform Pitch for an Integrated Spectrometer Module (집적화된 분광모듈 구현을 위한 고분자 기반의 비등간격 평면나노회절격자 제작)

  • Kim, Hwan-Gi;Oh, Seung-Hun;Choi, Hyun-Yong;Park, Jun-Heon;Lee, Hyun-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This paper presents the design and fabrication of a planar nano-diffraction grating for an integrated miniature spectrometer module. The proposed planar nano-diffraction grating consists of nonuniform periods, to focus the reflected beams from the grating's surface, and an asymmetrical V-shaped groove profile, to provide uniform diffraction efficiency in the wavelength range from 400 to 650 nm. Also, to fabricate the nano-diffraction grating using low-cost UV-NIL technology, we analyzed the FT-IR spectrum of a uvcurable resin and optimized the conditions for the UV curing process. Then, we precisely fabricated the polymeric nano-diffraction grating within 5 nm in dimensional accuracy. The integrated spectrometer module using the fabricated polymeric planar nano-diffraction grating provides spectral resolution of 5 nm and spectral bandwidth of 250 nm. Our integrated spectrometer module using a polymeric planar nano-diffraction grating serves as a quick and easy solution for many spectrometric applications.

Effect of surface toughness on the interfacial adhesion energy between glass wafer and UV curable polymer for different surface roughness (표면거칠기에 따른 글래스 웨이퍼와 UV 경화 폴리머사이의 계면접착 에너지 평가)

  • Jang, Eun-Jung;Hyun, Seoung-Min;Choi, Dae-Geun;Lee, Hak-Joo;Park, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.40-44
    • /
    • 2008
  • The interfacial adhesion energy between resist and a substrate is very important due to resist pull-off problems during separation of mold from a substrate in nanoimprint process. And effect of substrate surface roughness on interfacial adhesion energy is very important. In this paper, we have treated glass wafer surface using $CF_4$ gas for increase surface roughness and it has tested interfacial adhesion properties of UV resin/glass substrate interfaces by 4 point bending test. The interfacial adhesion energies by bare, 30, 60 and 90 sec surface treatments are 0.62, 1.4, 1.36 and 2 $J/m^2$, respectively. The test results showed quantitative comparisons of interfacial fracture energy (G) effect of glass wafer surface roughness.

  • PDF

UV-Nanoimprint Lithography Using Fluorine Doped Diamond-Like Carbon Stamp (불화 함유 다이아몬드 상 탄소 스탬프를 사용하는 UV 나노 임프린트 리소그래피)

  • Jeong, Jun-Ho;Ozhan, Altun Ali;Rha, Jong-Joo;Choi, Dae-Geun;Kim, Ki-Don;Choi, Jun-Hyuk;Lee, Eung-Sug
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • A fluorine-doped diamond-like carbon (F-DLC) stamp which has high contact angle, high UV-transmittance and sufficient hardness, was fabricated using the following direct etching method: F-DLC is deposited on a quartz substrate using DC and RF magnetron sputtering, PMMA is spin coated and patterned using e-beam lithography and finally, $O_2$ plasma etching is performed to transfer the line patterns having 100 nm line width, 100 nm line space and 70 nm line depth on F-DLC. The optimum fluorine concentration was determined after performing several pre-experiments. The stamp was applied successfully to UV-NIL without being coated with an anti-adhesion layer.

  • PDF

Fabrication of Fluorine Doped Diamond-Like Carbon Stamp for UV-Nanoimprint Lithography (UV 나노임프린트 리소그래피를 위한 불화 함유 다이아몬드 상 탄소 스탬프의 제작)

  • Ozhan Altun Ali;Jeong Jun-Ho;Rha Jong-Joo;Choi Dae-Geun;Kim Ki-Don;Lee Eung-Sug
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.145-146
    • /
    • 2006
  • A fluorine-doped diamond-like carbon (F-DLC) stamp which has high contact angle, high UV-transmittance and sufficient hardness, was fabricated using the following direct etching method: F-DLC is deposited on a quartz substrate using DC and RF magnetron sputtering, PMMA is spin coated and patterned using e-beam lithography and finally, O2 plasma etching is performed to transfer the line patterns having 100 nm line width, 100 nm line space and 70 nm line depth on F-DLC. The optimum fluorine concentration was determined after performing several pre-experiments. The stamp was applied successfully to UV-NIL without being coated with an anti-adhesion layer.

  • PDF