Browse > Article

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers  

Park Jun-Hong (Department of Fine Chemical Engineering, Chungnam National University)
Pham Tuan-Anh (Department of Fine Chemical Engineering, Chungnam National University)
Lee Jae-Jong (Nano-Mechnical Systems Technology, Korea Institute of Machinery & Materials)
Kim Dong-Pyo (Department of Fine Chemical Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.30, no.5, 2006 , pp. 407-411 More about this Journal
Abstract
The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.
Keywords
UV-nanoimprint lithography; inorganic polymer; shrinkage; ceramic pattern;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 M. Mehrcgancy, C. A. Zorman, N. Rajan, and C. H. Wu, IEEE, 86, 1594 (1998)   DOI   ScienceOn
2 P. Baldus, M. Jansen, and D. Spoorn, Science, 285, 699 (1999)   DOI
3 Y. Dong, C. Zorman, and P. Molian, J. Micromech. Microeng., 13, 680 (2003)   DOI   ScienceOn
4 T. H. P. Chang, M. G. R. Thomson, M. L. Yu, E. Kratschmer, H. S. Kim, K. Y. Lee, S. A. Rishton, and S. Zolgharnain, Microelectron. Eng., 32, 113 (1996)   DOI
5 I. Haisma, M. Verheijen, K. Heuvel, and J. Vac, Sci. Technol. B, 14, 4124 (1996)   DOI   ScienceOn
6 L. H. Nguyen, M. Straub, and M. Gu, Adv. Funct. Mater., 15, 209 (2005)   DOI   ScienceOn
7 H. Yang, P. Deschatelets, S. T. Brittain, and G. M. Whitesides, Adv. Mat., 13, 54 (2001)   DOI   ScienceOn
8 C. K. Fredrickson and Z. H. Fan, Lab on a Chip, 4, 526 (2004)   DOI   ScienceOn
9 K. Y. Suh, Y. S. Kim, and H. H. Lee, Adv. Mater., 13, 1386 (2001)   DOI   ScienceOn
10 L. Liew, Y. Liu, R. Luo, T. Cross, L. An, V. M. Bright, M. L. Dunn, J. W. Daily, and R. Raj, Sensor. Actuat. A, 95, 120 (2002)   DOI   ScienceOn
11 M. D. Levenson, Solid State Technol., 33, 6 (1996)
12 I. K. Sung, Christian, M. Mitchell, D. P. Kim, and Paul J. A. Kenis, Adv. Funct. Mater., 15, 1336 (2005)   DOI   ScienceOn
13 A. Kumar, H. A. Biebuyck. and G. M. Whitesides, Langmuir, 10, 1498 (1994)   DOI   ScienceOn
14 E. Kim, Y. Xia, and G. M. Whitesides, Nature, 376, 581 (1995)   DOI   ScienceOn
15 X. M. Zhao, Y. Xia, and G. M. Whitesides, Adv. Mater., 8, 837 (1996)   DOI   ScienceOn
16 A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, Nat. Biotechnol., 17, 1109 (1999)   DOI   ScienceOn
17 S. Roy, C. A. Zorman, M. Mehregany, and R. DeAnna, ANASYS Solutions, 1, 22 (1999)
18 D. Gao, M. J. Wijesundara, C. Carraro, R. T. Howe, and R. Maboudian, IEEE, 4, 441 (2004)
19 M. Cavallini, M. Murgia, and F. Biscarini, Mater. Sci. & Eng. C, 19, 275 (2002)   DOI