• Title/Summary/Keyword: UV process

Search Result 1,511, Processing Time 0.029 seconds

Manufacture of High-Aspect-Ratio Polymer Nano-Hair Arrays by UV Nano Embossing Process (UV 나노 엠보싱 공정을 이용한 고종횡비 고분자 나노 섬모 어레이 제작)

  • Kim Dong-Sung;Lee Hyun-Sup;Lee Jung-Hyun;Lee Kun-Hong;Kwon Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.773-778
    • /
    • 2006
  • High-aspect-ratio nano-hair or nano-pillar arrays have great potential in a variety of applications. In this study, we present a simple and cost-effective replication method of high-aspect-ratio polymer nano-hair arrays. Highly ordered nano-porous AAO (anodic aluminum oxide) template was utilized as a reusable nano-mold insert. The AAO nano-mold insert fabricated by the two-step anodization process in this study had close- packed straight nano-pores, which enabled us to replicate densely arranged nano-hairs. The diameter, depth and pore spacing of the nano-pores in the fabricated AAO nano-mold insert were about 200nm, $1{\mu}m$ and 450nm, respectively. For the replication of polymer nano-hair arrays, a UV nano embossing process was applied as a mass production method. The UV nano embossing machine was developed by our group for the purpose of replicating nano-structures by means of non-transparent nano-mold inserts. Densely arranged high-aspect-ratio nano-hair arrays have been successfully manufactured by means of the UV nano embossing process with the AAO nano-mold insert under the optimum processing condition.

Properties and Curing Behaviors of UV Curable Adhesives with Different Coating Thickness in Temporary Bonding and Debonding Process (Temporary Bonding and Debonding 공정용 UV 경화형 접착 소재의 코팅 두께에 따른 물성 및 경화거동)

  • Lee, Seung-Woo;Lee, Tae-Hyung;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.873-879
    • /
    • 2014
  • UV curable adhesives with different acrylic functionalities were synthesized for temporary bonding and debonding process in 3D multi-chip packaging process. The aim is to study various factors which have an influence on UV curing. The properties and curing behaviors were investigated by gel fraction, peel strength, probe tack, and shear adhesion failure temperature. The results show that the properties and curing behaviors are dependent on not only acrylic functionalities of binders but also UV doses and coating thickness.

Degradation of 3-Chlorophenol by a Ultraviolet-Fenton Process: Parameters and Degradation Pathways (자외선 펜톤산화공정에 의한 수중 3-염화페놀 분해특성 및 분해경로 연구)

  • Kim, Il-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1089-1095
    • /
    • 2013
  • The degradation of 3-chlorophenol(3-CP) by various AOPs(Advanced Oxidation Processes) including the ultraviolet / hydrogen peroxide, the Fenton and the ultraviolet(UV)-Fenton process has been conducted. The highest removal efficiency for 3-CP in the aqueous phase was obtained by the UV-Fenton process among the AOPs. In the UV-Fenton process, The removal efficiency of 3-CP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 3-CP by UV-Fenton reaction, 3-chlorocatechol, 4-chlorocatechol, and chlorohydroquinone were detected thus the degradation pathways were proposed.

Rapid Manufacturing of 3D Micro-products using UV Laser Ablation and Phase-change Filling

  • Shin Bo-Sung;Kim Jae-Gu;Chang Won-Suk;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.56-59
    • /
    • 2006
  • UV laser micromachining is generally used to create microstructures for micro-products through a sequence of lithography-based photo-patterning steps. However, the micromachining process is not suitable for rapid realization of complex 3D micro-products because it depends on worker experience. In addition, the cost and time required to make many masks are excessive. In this paper, a more effective and rapid micro-manufacturing process, which was developed based on laser micromachining, is proposed for fabricating micro-products directly using UV laser ablation and phase-change filling. The filling process is useful for holding the micro-products during the ablation step. The proposed rapid micro-manufacturing process was demonstrated experimentally by fabricating 3D micro-products from functional UV-sensitive polymers using 3D CAD data.

Comparison of Durability for PUA Type Resin using Wear and Nano-indentation Test (마모 및 나노 압입 시험을 이용한 PUA계 레진의 내구성 비교)

  • Choi, Hyun Min;Kwon, Sin;Jung, Yoon-Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • Films with special properties (e.g., water-repellent films, optical films, anti-reflection films, and flexible films) are referred to as functional films. Recently, there has been interest in fine patterning methods for film fabrication. In particular there have been many studies that use a UV nanoimprint process involving a UV curing method. In this paper, a polymer film was fabricated by the UV nanoimprint process with a micro-pattern, and its durability was evaluated by a wear test and a nano-indentation test. The film mechanical properties (such as coefficient of friction, hardness, and modulus of elasticity) were measured. Moreover, the choice of PUA type resin used in the UV nanoimprint process was confirmed to impact the durability of the thin film. Despite making the polymer film samples using the same method and PUA type resin, different coefficient of friction, hardness, and modulus of elasticity values were obtained. PUA 4 resin had the most favorable coefficient of friction, hardness, and modulus of elasticity. This material is predicted to produce a high durability functional film.

Development of UV molding Process to Integrate Microlens Array on VCSEL Array for Optical Communication (광통신 용 VCSEL Array상에 Microlens Array를 집적하기 위한 UV성형 공정기술 개발)

  • 한정원;김석민;김홍민;이지승;임지석;강신일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.840-843
    • /
    • 2004
  • UV molding is a process for integrating micro/nano polymeric optical components on optoelectronic modules. In the present study, a microlens array for vertical cavity surface emitting laser(VCSEL) to fiber coupling was designed, integrated and tested. At the design stage, design variables ware optimized to maximize the coupling efficiency, and tolerance analysis was carried out. At the integration stage, the UV transparent mold was fabricated and the microlens array on VCSEL array was integrated by UV molding process. Finally the coupling efficiency of VCSEL to fiber was measured and analyzed.

  • PDF

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Sintering process of UV curable ink (UV 경화형 잉크의 최적의 경화 Process 확립)

  • Song, Young-Ah;Oh, Sung-Il;Cho, Sung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.532-532
    • /
    • 2007
  • UV 경화형 ink를 inkjet printing을 통해 PCB에 patterning 하는 방법에 관한 연구이다. UV 경화형 ink는 일반적으로 ink의 투명도, 색깔, 두께에 따라 완전경화가 밀어나지 않을 수도 있는데 본 연구에서 사용한 UV ink는 particle이 첨가되어 있고 후막 인쇄를 목적으로 하기 때문에 완전경화가 어려웠다. 일반적으로 이러한 UV 경화형 ink의 문제점들을 해결하기 위하여 열경화성 첨가제를 일부 첨가하여 UV에 의한 표면경화와 얼에 의한 속 경화를 진행하는 hybrid system이 사용되고 있지만 본 연구는 PCB를 target으로 하기 때문에 열에 약한 PCB 내의 많은 소자들 때문에 열처리가 쉽지 않은 문제가 있다. 이러한 여러 제약적인 환경에서 UV ink의 완전경화를 위해 경화 process를 최적화 하였으며 10~20um의 후막 인쇄에도 ink가 완전 경화하여 연필경도 9H를 확보하는데 성공하였다.

  • PDF

Synthesis and Adhesion Properties of UV Curable Acrylic PSAs for Semiconductor Manufacturing Process (반도체 제조 공정용 UV 경화형 아크릴 점착제의 합성과 점착 특성)

  • Lee, Seon Ho;Lee, Sang Keon;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • UV curable acryl resin, pressure-sensitive adhesives (PSAs), are used in many different parts in the world. In particular, PSAs has been used in the wafer manufacturing process of semiconductor industry. As wafers become much thinner, UV curable PSAs require more proper adhesion performance. In this study, acrylic PSAs containing hydroxyl groups were synthesized using monomers of 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, styrene monomer and 2-hydroxyethyl acrylate. Isocyanate modified UV curable PSAs were then prepared by the adduct reaction that facilitates the UV curing property via controlling the amount of methacryloyloxyehtyl isocyanate. The proper adhesion performance and UV curing behavior of UV curable PSAs with various hydroxyl values were studied, and experimental conditions were then optimized to raise the efficiency of wafer manufacturing process. It was found that in case of using the equivalent ratio of 1 : 1 isocyanate hardener used in the UV curable PSAs, the peel strength before the UV curing process decreased as the amount of hydroxyl groups increased in the PSAs. The peeling adhesive strength was also decreased with increasing UV dose due to high curing characteristics.

Degradation of Dye Wastewater by Advanced Oxidation Process: A Comparative Study (고급산화공정에 의한 안료폐수 처리: 비교 연구)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2006
  • The degradation of Rhodamine B (RhB) in water was investigated in laboratory-scale experiments, using five advanced oxidation Processes (AOPs) $UV/H_2O_2$, lenten, photo-lenten, $UV/TiO_2,\;UV/TiO_2/H_2O_2$. The photodegradation experiments were carried out in a fluidized bed photoreactor equipped with an immersed 32 W UV-C lamp as light source. initial decolorization rate and COD removal efficiency were evaluated and compared. The results obtained showed that the initial decolorization rate constant was quite different for each oxidation process. The relative order of decolorization was: photo-fenton > $UV/TiO_2/H_2O_2$ > fenton > $UV/H_2O_2$ > $UV/TiO_2$ > UV > $H_2O_2$. The relative order of COD removal was different from decolorization: photo-fenten ${\fallingdotseq}$ $UV/TiO_2/H_2O_2\;>\;UV/TiO_2\;>\;fenton\;>\;UV/H_2O_2$. The Photo-lenten and $UV/TiO_2/H_2O_2$ processes seem to be appropriate for decolorization and COD removal of dye wastewater.