• Title/Summary/Keyword: Transmittance spectra

Search Result 148, Processing Time 0.032 seconds

Characteristics of TiO2 Thin Films Fabricated by R.E, Magnetron Sputtering (R.F Magnetron Sputtering법으로 제조한 TiO2 박막의 특성)

  • Chu Y. H.;Choi D. K.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.821-827
    • /
    • 2004
  • Titanium oxide thin films were prepared on Si(100) substrates by R.F. magnetron reactive sputtering at $30\sim200watt$ R.F power range, and annealed at $600^{\circ}C\sim800^{\circ}C$ for 1 hour. The properties of $TiO_2$ thin films were analyzed using x-ray, ${\alpha}-step$, ellipsometer, scanning electron microscopy, and FT-IR spectrometer. Upon in-situ depositions, the initial phase of $TiO_2$ thin film showed non-crystalline phase at R.F. power $30\sim100$ watt. The crosssection of $TiO_2$ thin films were sbserved to be the columnar structure. With the increasing R.F power and annealing temperature, the grain size, crystallinity, refractive index, and void size of titanium oxides showed a tended to increase. The FT-IR transmittance spectra of titanium oxide thin films have the obsorption band of Ti-O bond, Si-O bond, Si-O-Ti bond and O-H bond. With the increase of R.F. power and annealing temperature, these films have the stronger bond structures. It is considered that such a phenomena is due to phase transition and good crystallinity

Effects of Boron Doping on the Structural and Optical Properties of CdS Thin Films (보론 도핑된 CdS 박막의 구조적 및 광학적 특성)

  • Lee, Jae-Hyeong;Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1032-1037
    • /
    • 2003
  • Boron-doped CdS thin films were chemically deposited onto glass substrates. X-ray diffraction (XRD), photoluminescence (PL), and Raman techniques were used to evaluate the quality of B-doped CdS films. XRD results have confirmed that B-doped CdS films has a hexagonal structure with a preferential orientation of the (002) plane. The PL spectra for all samples consists of two prominent broad bands around 2.3 eV (green emission) and 1.6 eV (red emission) and the higher doping concentrations gradually decreased the green emission and red emission. Raman analysis has shown that undoped films have structure superior to those of B-doped CdS films. Boron doping into CdS films improved the optical transmittance and increased the optical band gap.

Fabrications and properties of ZnS thin film used as a buffer layer of electroluminescent device (전계발광소자 완충층용 ZnS 박막 제작 및 특성)

  • 김홍룡;조재철;유용택
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1994
  • The role of ZnS buffer layer not only suppresses chemical reactions between emission material and insulating material but also alters the luminescence and the crystallinity of the emission layer, if ZnS buffer layer was sandwiched between emission layer and insulating layer of electroluminescent device. In this research, we fabricated ZnS thin film with rf magnetron sputter system by varying rf power 100, 200W, substrate temperature 100, 150, 200, 250.deg. C and post-annealing temperature 200, 300, 400, 500.deg. C and analysed X-ray diffraction pattern, transmission spectra and cross section by SEM photograph for seeking the optimal crystallization condition of ZnS buffer layer. As a result, increasing the rf power, the crystallinity of ZnS thin film was improved. It was found that the ZnS thin film had better properties than anything else when fabricated with the following conditions ; rf power 200W, substrate temperature 150.deg. C, and post-annealing temperature 400.deg. C. ZnS thin film had the transmittance more than 80% in visible range. So it is suitable to use as a buffer layer of electroluminescent devices.

  • PDF

Effects of Concentration of ZnO Nanoparticles on Mechanical, Optical, Thermal, and Antimicrobial Properties of Gelatin/ZnO Nanocomposite Films

  • Shankar, Shiv;Teng, Xinnan;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.2
    • /
    • pp.41-49
    • /
    • 2014
  • This study illustrates the synthesis of gelatin based zinc oxide nanoparticle (ZnONPs) incorporated nanocomposite films using different concentrations of ZnONPs. The ZnONPs were oval in shape and the size ranged from 100- 200 nm. The nanocomposite films were characterized by UV-visible, FE-SEM, FT-IR, and XRD. The concentrations of ZnONPs greatly influenced the properties of nanocomposite films. The absorption peaks around 360 nm increased with the increasing concentrations of ZnONPs. The surface color of film did not change while transmittance at 280 nm was greatly reduced with increase in the concentration of ZnONPs. FTIR spectra showed the interaction of ZnONPs with gelatin. XRD data demonstrated the crystalline nature of ZnONPs. The thermostability, char content, water contact angle, water vapor permeability, moisture content, and elongation at break of nanocomposite films increased, whereas, tensile strength and modulus decreased with increase in the concentrations of ZnONPs. The gelatin/ZnONPs nanocomposite films showed profound antibacterial activity against both Gram-positive and Gram-negative food-borne pathogenic bacteria. The gelatin/$ZnONP^{1.5}$ nanocomposite film showed the best UV barrier and antimicrobial properties among the tested-films, which indicated a high potential for use as an active food packaging films with environmentally-friendly nature.

  • PDF

Annealing Effects of Indium Tin Oxide films grown on 91ass by radio frequency magnetron sputtering technique

  • Jan M. H.;Choi J. M.;Whang C. N.;Jang H. K.;Yu B. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.159-164
    • /
    • 2005
  • Indium tin oxide (ITO) films were deposited on a glass slide at a thickness of 280 nm by radio frequency(rf) magnetron sputtering from a ceramic target composed of $In_2O_3\;(90\%)\;+\;SnO_2\;(10\%)$. We investigated the effects of the annealing temperature (Ta) between 200 and 350'E for 30 min in air on such properties as thermal stability, surface morphology, and crystal structure of the films. X-ray diffraction spectra revealed that all the films were oriented preferably with [222] direction and [440] direction and the peak intensity increased with increasing annealing temperature. X-ray photoelectron spectroscopy (XPS) showed that the sodium was out-diffused from the glass substrate at the annealing temperature of $350^{\circ}C$. The sodium composition of the ITO film amlealed at $350^{\circ}C\;for\;30\;min\;was\;2.5\%$ at the surface. Also the sodium peak almost disappeared after 3 keV $Ar^+$sputtering for 6 min. The visible transmittance of all ITO films was over $77\%$.

$H_2$ plasma treatment effects on electrical and optical properties of the BZO (ZnO:B) thin films

  • Yoo, Ha-Jin;Son, Chan-Hee;Choi, Joon-Ho;Kang, Jung-Wook;Cho, Won-Tae;Park, Sang-Gi;Lee, Yong-Hyun;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.309-309
    • /
    • 2010
  • We have investigated the effect of $H_2$ plasma treatment on the BZO (ZnO:B, Boron doped ZnO) thin films. The BZO thin films are prepared by LP-MOCVD (Low Pressure Metal Organic Chemical Vapor Deposition) technique and the samples of BZO thin film are performed with $H_2$ plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. After exposing $H_2$ plasma treatment, measurement of transmittance, reflectance and haze spectra in 300~1100 nm, electrical properties as resistivity, mobility and carrier concentration and work function was analysed. Regarding the results of the $H_2$ plasma treatment on the BZO thin films are application to the TCO for solar cells, such as the a-Si thin films solar cell.

  • PDF

Observation of Unusual Structural Phase Transition in $VO_2$ Thin Film on GaN Substrate

  • Yang, Hyeong-U;Son, Jeong-In;Cha, Seung-Nam;Kim, Jong-Min;Gang, Dae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.573-573
    • /
    • 2012
  • High quality $VO_2$ thin films were successfully grown on GaN substrate by optimizing oxygen partial pressure during the growth using RF sputtering technique. The $VO_2$ thin film grown on GaN substrate exhibited an unusual metal insulator transition behavior, which was known to be observed only either in doped sample or under uniaxial stress. Raman spectra also confirmed that metal insulator transition occurred from monoclinic M1 to rutile R phase via monoclinic M2 phase with increasing temperature. We believe that large lattice mismatch between $VO_2$ and GaN substrate may cause M2 phase to be thermodynamically stable. Optical transmittance and its electrical switching behavior were carefully investigated to elucidate the underlying physics of its metal insulator transition behavior. This study may lead to a unique opportunity to better understand the growth mechanism of M2 phase dominant $VO_2$ thin films.

  • PDF

Emission Characteristics of Dual-Side Emission OLED with Al Cathode Thickness Variation (Al 음극 두께 변화에 따른 양면 발광 OLED의 발광 특성)

  • Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.174-178
    • /
    • 2015
  • We studied emission characteristics for blue fluorescent dual-side emission OLED with Al cathode thickness variation. In the bottom emission OLED of Al cathode with 10, 15, 20, 25, 30, and 150 nm thickness, maximum luminance showed 36.1, 8,130, 9,300, 12,000, 13,000, and $12,890cd/m^2$, and maximum current efficiency showed 2, 8.8, 10, 10.5, 10.8, and 11.4 cd/A, respectively. The emission characteristics of the bottom emission seemed to be improved according to decrease of resistance as the thickness of Al cathode increase. In the top emission OLED of Al cathode with 10, 15, 20, 25, and 30 nm thickness, maximum luminance showed 4.3, 351, 131, 88.6, and $33.2cd/m^2$, and maximum current efficiency showed 0.23, 0.38, 0.21, 0.16, and 0.09 cd/A, respectively. It yielded the highest maximum luminance and maximum current efficiency in Al cathode thickness 15 nm. It showed a tendency to decrease as the thickness of Al cathode increase. The reason for this is due to decrease of transmittance with increasing of Al cathode thickness. The electroluminescent spectra of bottom and top emission OLED were not change.

Investigation of Photoluminescence and Annealing Effect of PS Layers

  • Han, Chang-Suk;Park, Kyoung-Woo;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.124-128
    • /
    • 2018
  • N-type porous silicon (PS) layers and thermally oxidized PS layers have been characterized by various measuring techniques such as photoluminescence (PL), Raman spectroscopy, IR, HRSEM and transmittance measurements. The top surface of PS layer shows a stronger photoluminescence peak than its bottom part, and this is ascribed to the difference in number of fine silicon particles of 2~3 nm in diameter. Observed characteristics of PL spectra are explained in terms of microstructures in the n-type PS layers. Common features for both p-type and n-type PS layers are as follows: the parts which can emit visible photoluminescence are not amorphous, but crystalline, and such parts are composed of nanocrystallites of several nm's whose orientations are slightly different from Si substrate, and such fine silicon particles absorb much hydrogen atoms near the surfaces. Light emission is strongly dependent on such fine silicon particles. Photoluminescence is due to charge carrier confinement in such three dimensional structure (sponge-like structure). Characteristics of visible light emission from n-type PS can be explained in terms of modification of band structure accompanied by bandgap widening and localized levels in bandstructure. It is also shown that hydrogen and oxygen atoms existing on residual silicon parts play an important role on emission stability.

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.