DOI QR코드

DOI QR Code

Emission Characteristics of Dual-Side Emission OLED with Al Cathode Thickness Variation

Al 음극 두께 변화에 따른 양면 발광 OLED의 발광 특성

  • Kim, Ji-Hyun (Department of Advanced Materials Science and Engineering, Daejin University) ;
  • Ju, Sung-Hoo (Department of Advanced Materials Science and Engineering, Daejin University)
  • 김지현 (대진대학교 신소재공학과) ;
  • 주성후 (대진대학교 신소재공학과)
  • Received : 2015.08.04
  • Accepted : 2015.08.27
  • Published : 2015.08.31

Abstract

We studied emission characteristics for blue fluorescent dual-side emission OLED with Al cathode thickness variation. In the bottom emission OLED of Al cathode with 10, 15, 20, 25, 30, and 150 nm thickness, maximum luminance showed 36.1, 8,130, 9,300, 12,000, 13,000, and $12,890cd/m^2$, and maximum current efficiency showed 2, 8.8, 10, 10.5, 10.8, and 11.4 cd/A, respectively. The emission characteristics of the bottom emission seemed to be improved according to decrease of resistance as the thickness of Al cathode increase. In the top emission OLED of Al cathode with 10, 15, 20, 25, and 30 nm thickness, maximum luminance showed 4.3, 351, 131, 88.6, and $33.2cd/m^2$, and maximum current efficiency showed 0.23, 0.38, 0.21, 0.16, and 0.09 cd/A, respectively. It yielded the highest maximum luminance and maximum current efficiency in Al cathode thickness 15 nm. It showed a tendency to decrease as the thickness of Al cathode increase. The reason for this is due to decrease of transmittance with increasing of Al cathode thickness. The electroluminescent spectra of bottom and top emission OLED were not change.

Keywords

References

  1. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 51 (1987) 913. https://doi.org/10.1063/1.98799
  2. C. S. Park, D. H. Kong, J. H. Kang, S. H. Yun, S. H. Ju, J. Kor. Inst. Surf. Eng. 48, (2015) 115. https://doi.org/10.5695/JKISE.2015.48.3.115
  3. C. W. Tang, S. A. Vanslyke, and C. H. Chen, Appl. Phys. Lett., 65 (1989) 9.
  4. Zhengliang Wang, Hongbin Liang, Liya Zhou, Hao Wu, MMenglian Gong, and Qiang Su,. Chem. Phys. lett. 412, (2005) 313. https://doi.org/10.1016/j.cplett.2005.07.009
  5. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett. 56, (1990) 799. https://doi.org/10.1063/1.103177
  6. Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. S. Chae, S. K. Kwon, Adv. Mater. 13, (2001) 1690. https://doi.org/10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K
  7. Y. Kan, L. Wang, L. Duan, Y. Hu, G. Wu, Y. Qiua, Appl. Phys. Lett. 84, (2004) 1513. https://doi.org/10.1063/1.1651653
  8. M. T. Chan, S. L. Lai, F. L. Wong, O. Lengyel, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 371, (2003) 700. https://doi.org/10.1016/S0009-2614(03)00310-5
  9. M. Y. Chan, S. L. Lai, M. K. Fung, C. S. Lee, S. T. Lee, Chem. Phys. Lett. 374, (2003) 215. https://doi.org/10.1016/S0009-2614(03)00675-4
  10. B. W. D'Andrade, Adv. Mater 16 (2004) 1585. https://doi.org/10.1002/adma.200400684

Cited by

  1. Emission Characteristics of Dual Emission Tandem OLED with Charge Generation Layer MoOxand Cathode Al Thickness vol.49, pp.3, 2016, https://doi.org/10.5695/JKISE.2016.49.3.316