Browse > Article

Annealing Effects of Indium Tin Oxide films grown on 91ass by radio frequency magnetron sputtering technique  

Jan M. H. (Institute of Physics and Applied Physics, Yonsei University)
Choi J. M. (Institute of Physics and Applied Physics, Yonsei University)
Whang C. N. (Institute of Physics and Applied Physics, Yonsei University)
Jang H. K. (Yonsei Center for Nano technology, Yonsei Univ.)
Yu B. S. (Dept. of General Studies, Hankuk Aviation University)
Publication Information
Journal of the Korean Vacuum Society / v.14, no.3, 2005 , pp. 159-164 More about this Journal
Abstract
Indium tin oxide (ITO) films were deposited on a glass slide at a thickness of 280 nm by radio frequency(rf) magnetron sputtering from a ceramic target composed of $In_2O_3\;(90\%)\;+\;SnO_2\;(10\%)$. We investigated the effects of the annealing temperature (Ta) between 200 and 350'E for 30 min in air on such properties as thermal stability, surface morphology, and crystal structure of the films. X-ray diffraction spectra revealed that all the films were oriented preferably with [222] direction and [440] direction and the peak intensity increased with increasing annealing temperature. X-ray photoelectron spectroscopy (XPS) showed that the sodium was out-diffused from the glass substrate at the annealing temperature of $350^{\circ}C$. The sodium composition of the ITO film amlealed at $350^{\circ}C\;for\;30\;min\;was\;2.5\%$ at the surface. Also the sodium peak almost disappeared after 3 keV $Ar^+$sputtering for 6 min. The visible transmittance of all ITO films was over $77\%$.
Keywords
ITO; glass; rf magnetron sputtering; annealing; sodium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Martino, A. Luches, M. Fernandez, P. Anobile, and V. Petnizzelii, J. Phys. D: Appl. Phys. 34, 2606 (2001)   DOI   ScienceOn
2 L. Keesmann and Z. A. Allgem, Chem. 346, 30 (1966)
3 H. Bach and H. Schroeder, Thin Solid Films 1, 255 (1967/68)   DOI   ScienceOn
4 S. H. Brewer and S. Franzen, Chem. Phys. 300, 285 (2004)   DOI   ScienceOn
5 P. Nath and R. F. Bunshah, Thin Solid Films 69, 63 (1980)   DOI   ScienceOn
6 P. P. Deimel, B. B. Heimhofer, G. Krtz, H. J. Lilienhof, J. Wind, G. Muller, and E. Voges, IEEE Photonic Technol. Lett. 2, 449 (1990)
7 A. Ambrosini, A. Duarte, K. R. Poeppelmeier, M. Lane, C. R. Kaimewurf, and T. O. Mason, J. Solid State Chem. 153, 41 (2000)   DOI   ScienceOn
8 L. A. Ryabova, V. S. Salun, and I. A. Serbinov, Thin Solid Films 92, 327 (1982)   DOI   ScienceOn
9 W.-K. Lee, T. Machino, and T. Sugihara, Thin Solid Films 224, 105 (1993)   DOI   ScienceOn
10 J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, edited by J. Chastain, and R. C. King, Jr. (Perkin-Elmer, Minnesota, 1992)
11 O. Anderson, K. Bange, and C. Ottermann, in Thin Films on Glass, edited by H. Bach and D. Krause (Springer, Berlin, 1997), p. 156
12 M. Masuda, K. Sakuma, E. Satoh, Y. Yamasaki. H. Miyasaka, and J. Takeuchi, Proc. 6th Int. Electronic Manufacturing Technology Symp., 95 (1989)
13 G. Betz and G. K. Wehner, in Topics in Applied Physics, Vol. 52, edited by R. Behrisch (Springer, Berlin, 1983), p. 11
14 H. K. Jang, S. W. Whangbo, Y. K. Choi, K. Jeong, C. N. Whang, C. H. Wang, D. J. Choi, and S. Lee, J. Non-Crystal. Solids. 296, 182 (2001)   DOI   ScienceOn