E1-P008

H₂ plasma treatment effects on electrical and optical properties of the BZO (ZnO:B) thin films

<u>Ha Jin Yoo¹</u>, Chan Hee Son¹, Joon Ho Choi¹, Jung Wook Kang¹, Won Tae Cho², Sang Gi Park², Yong Hyun Lee², Eun Ha Choi¹, Guangsup Cho¹, Gi Chung Kwon¹

¹Department of Electrophysics, Kwangwoon University, ²Thin Film Team, Jusung Engineering Co., Ltd.

We have investigated the effect of H_2 plasma treatment on the BZO (ZnO:B, Boron doped ZnO) thin films. The BZO thin films are prepared by LP-MOCVD (Low Pressure Metal Organic Chemical Vapor Deposition) technique and the samples of BZO thin film are performed with H_2 plasma treatment by plasma treatment system with 13.56 MHz as RIE (Reactive Ion Etching) type. After exposing H_2 plasma treatment, measurement of transmittance, reflectance and haze spectra in $300\sim1100$ nm, electrical properties as resistivity, mobility and carrier concentration and work function was analysed. Regarding the results of the H_2 plasma treatment on the BZO thin films are application to the TCO for solar cells, such as the a-Si thin films solar cell.