본 논문에서는 체내 이식용 신경 신호 기록 장치를 위한 저전압 저전력 아날로그 front-end 집적회로를 설계하였다. 제안된 집적 회로는 1 Hz에서 5 kHz 주파수 대역에 존재하는 신경 신호를 처리하기 위해 저잡음 neural 증폭기와 대역폭 조절이 가능한 능동 bandpass 필터로 구성되어 있다. Neural 증폭기는 우수한 잡음 특성을 위해 source-degenerated folded-cascode 연산증폭기를 기반으로 하여 설계하였고, 능동 필터의 경우 저전력의 current-mirror 연산증폭기를 이용하여 설계하였다. 능동 필터의 high-pass cutoff 주파수는 1 Hz에서 300 Hz까지 제어가 가능하며, low-pass cutoff 주파수는 300 Hz에서 8 kHz까지 제어가 가능하다. 전체 아날로그 front-end 회로는 53.1 dB의 전압 이득 성능과 1 Hz에서 10 kHz 대역에 대해서 $4.68{\mu}Vrms$의 입력 잡음 성능과 3.67의 noise efficiency factor 성능을 보인다. $18-{\mu}m$ CMOS 공정을 이용하여 설계를 하였고 1-V 전원에서 $3.2{\mu}W$의 전력 소모 성능을 갖는다. 칩 레이아웃 면적은 $0.19 mm^2$ 이다.
고주파 응용을 위한 AB급 바이폴라 선형 트랜스컨덕터들을 제안한다. 이들 트랜스컨덕터는 전압 폴로워, 저항기, 그리고 전류 폴로워로 구성된다. 폴로워 회로들은 트랜스리니어 셀들로 실현되기도 하고, 단위-이득 버퍼들로 실현되기도 한다. 제안된 트랜스컨덕터들은 8 GHz 바이폴라 트랜지스터-어레이 파라미터를 이용하여 SPICE 시뮬레이션 되었다. 시뮬레이션 결과는, 트랜스리니어 셀들을 이용한 트랜스컨덕터가 단위-이득 버퍼들을 이용한 그것보다 더 좋은 선형성을 가지는데 반해, 후자는 전자보다 더 좋은 온도 특성과 더 높은 입력 저항을 가진다는 것을 보여준다. 제안된 트랜스컨덕터들의 실용성을 검증하기 위하여, 이들 트랜스컨덕터로 중간 주파수(IF) 대역의 4차 대역-통과 여파기를 구현하였다.
In this paper, a Gm-C LPF utilizing common-mode feedforward (CMFF) CMOS inverter type operational transconductance amplifier (OTA) has been designed and verified by circuit simulations. The CMFF CMOS inverter OTA was optimized for wide input linearity and low current consumption using a standard 0.18 ${\mu}m$ CMOS process; gm of 100 ${\mu}S$ and current of 100 ${\mu}A$ at supplied voltage of 1.3 V. Using this optimized CMFF CMOS inverter type OTA, an elliptic 5th order Gm-C LPF for GPS specifications was designed. Gain and frequency tuning of the LPF was done by changing the internal supply voltages. The designed Gm-C LPF gave pass-band ripple of 1.6 dB, stop-band attenuation of 60.8 dB, current consumption of 0.60 mA at supply voltage of 1.2 V. The gain and frequency characteristics of designed Gm-C LPF was unchanged even though the input common-mode voltage is varied.
JSTS:Journal of Semiconductor Technology and Science
/
제8권3호
/
pp.251-263
/
2008
In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.
The self-cascode (SC) structure has low output voltage swing and high output resistance. In order to implement a simple and better SC structure, the native-$V_{th}$ MOSFETs which has low threshold voltage($V_{th}$) is applied. The proposed SC structure is designed using a qualified industry standard $0.18-{\mu}m$ CMOS technology. Measurement results show that the proposed SC structure has higher transconductance as well as output resistance than single MOSFET. In addition, analog building blocks (e.g. current mirror, basic amplifier circuits) with the proposed SC structure are investigated using by Cadence Spectre simulator. Simulation results show improved electrical performances.
CMOS VLSI 기술에서 고속으로 데이타를 인식하기 위해서는 비교적 낮은 전달 콘덕턴스와 MOS 소자 장치들의 불균형을 극복하는 것이 중요하다. 그러나 CMOS 소자들의 한계 때문에 VLSI 회로설계는 일반적으로 CMOS 동작에 알맞도록 바이폴라 A/D(analog-to-digital)변환기가 사용되었다. 또한 파이프라인으로 종속 연결된 RSA에 의하여 전압 비교가 이뤄지는 VLSI CMOS 비교기를 설계하였다. 따라서 본 논문에서는 파이프라인으로 연결된 CMOS 비교기와 병합한 A/D 변환기를 설계하였다.
IoT 산업이 빠르게 성장하면서 전원 관리 집적회로의 중요성이 부각되고 있다. 본 논문에서는 리플 Subtractor, 피드 포워드 커패시터, OTA를 이용한 LDO 구조를 제안한다. 이를 통해 10MHz가 넘는 고주파 영역에서도 -40dB 이상 높은 전원 전압 제거비(PSRR)를 얻었다. 설계된 Low-Dropout(LDO) 레귤레이터는 $0.18{\mu}m$ CMOS 공정에서 설계되었으며 시뮬레이션 결과 PSRR은 부하 전류 40mA, 500kHz에서 -73.4dB다. 최대 구동 가능 전류는 40mA이다.
This Paper presents a resistive wideband fully differential low-noise amplifier (LNA) designed using a noise-cancellation technique for TV tuner applications. The front-end of the LNA employs a cascode common-gate (CG) configuration, and cross-coupled local feedback is employed between the CG and common-source (CS) stages. The moderate gain at the source of the cascode transistor in the CS stage is utilized to boost the transconductance of the cascode CG stage. This produces higher gain and lower noise figure (NF) than a conventional LNA with inductor. The NF can be further optimized by adjusting the local open-loop gain, thereby distributing the power consumption among the transistors and resistors. Finally, an optimized DC gain is obtained by designing the output resistive network. The proposed LNA, designed in SK Hynix 180 nm CMOS, exhibits improved linearity with a voltage gain of 10.7 dB, and minimum NF of 1.6-1.9 dB over a signal bandwidth of 40 MHz to 1 GHz.
본 논문에서는 60 GHz 무선 LAN(wireless local area network) 응용을 위해 0.1 ㎛ Γ-gate pseudomorphic high electron mobility transistor(PHEMT)를 이용하여 V-band용 millimeter-wave monolithic integrated circuit(MIMIC) 저잡음 증폭기를 설계 및 제작하였다. 본 연구에서 개발한 PHEMT의 DC 특성으로 드레인 포화 전류 밀도(Idss)는 450 mA/mm, 최대 전달컨덕턴스(gm, max)는 363.6 mS/mm를 얻었으며, RF 특성으로 전류이득 차단주파수(fT)는 113 GHz, 최대 공진 주파수(fmax)는 180 GHz의 성능을 나타내었다. V-band MIMIC 저잡음 증폭기의 개발을 위해 PHEMT의 비선형 모델과 CPW 라이브러리를 구축하였으며, 이를 이용하여 V-band MIMIC 저잡음 증폭기를 설계하였다. 설계된 V-band MIMIC 저잡음 증폭기는 본 연구에서 개발된 PHEMT 기반의 MIMIC 공정을 이용해 제작되었으며, V-band MIMIC 저잡음 증폭기의 측정결과, 60 GHz에서 S21이득은 21.3 dB, 입력반사계수는 -10.6 dB 그리고 62.5 GHz에서 출력반사계수는 -29.7 dB의 특성을 나타내었다. V-band MIMIC 저잡음 증폭기의 잡음지수 측정결과, 60 GHz에서 4.23 dB의 특성을 나타내었다.
본 논문에서는 전자선 묘화 장비를 이용하여 게이트 길이가 0.2 $\mu\textrm{m}$ 이하인 밀리미터파용 전력 PHEMT 소자를 제작하고 DC 특성과 주파수 특성 그리고 전력 특성을 측정하고 분석하였다. PHEMT의 제작에 사용된 단위공정은 저 저항 오믹 접촉, 에어 브릿지 및 후면 가공 공정기술 등을 이용하였다. 제작된 전력용 PHEMT는 35 GHz의 중심주파수에서 4 dB의 S21 이득과 317 mS/mm의 최대 전달컨덕턴스 그리고 62 GHz의 차단주파수와 12G GHz의 최대 공진주파수를 나타내었다. 또한 측정된 전력 특성은 35.5 %의 드레인 효율과 16 dB의 최대 출력전력 그리고 4 dB의 전력 이득을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.