• 제목/요약/키워드: Topological Properties

검색결과 380건 처리시간 0.027초

Fundamental Groups of a Topological Transformation Group

  • Chu, Chin-Ku;Choi, Sung Kyu
    • 충청수학회지
    • /
    • 제4권1호
    • /
    • pp.103-113
    • /
    • 1991
  • Some properties of a path space and the fundamental group ${\sigma}(X,x_0,G)$ of a topological transformation group (X, G, ${\pi}$) are described. It is shown that ${\sigma}(X,x_0,H)$ is a normal subgroup of ${\sigma}(X,x_0,G)$ if H is a normal subgroup of G ; Let (X, G, ${\pi}$) be a transformation group with the open action property. If every identification map $p:{\Sigma}(X,x,G)\;{\longrightarrow}\;{\sigma}(X,x,G)$ is open for each $x{\in}X$, then ${\lambda}$ induces a homeomorphism between the fundamental groups ${\sigma}(X,x_0,G)$ and ${\sigma}(X,y_0,G)$ where ${\lambda}$ is a path from $x_0$ to $y_0$ in X ; The space ${\sigma}(X,x_0,G)$ is an H-space if the identification map $p:{\Sigma}(X,x_0,G)\;{\longrightarrow}\;{\sigma}(X,x_0,G)$ is open in a topological transformation group (X, G, ${\pi}$).

  • PDF

EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY

  • Han, Sang-Eon
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.915-932
    • /
    • 2010
  • The goal of this paper is to study extension problems of several continuities in computer topology. To be specific, for a set $X\;{\subset}\;Z^n$ take a subspace (X, $T_n^X$) induced from the Khalimsky nD space ($Z^n$, $T^n$). Considering (X, $T_n^X$) with one of the k-adjacency relations of $Z^n$, we call it a computer topological space (or a space if not confused) denoted by $X_{n,k}$. In addition, we introduce several kinds of k-retracts of $X_{n,k}$, investigate their properties related to several continuities and homeomorphisms in computer topology and study extension problems of these continuities in relation with these k-retracts.

ON A GROUP CLOSELY RELATED WITH THE AUTOMORPHIC LANGLANDS GROUP

  • Ikeda, Kazim Ilhan
    • 대한수학회지
    • /
    • 제57권1호
    • /
    • pp.21-59
    • /
    • 2020
  • Let LK denote the hypothetical automorphic Langlands group of a number field K. In our recent study, we briefly introduced a certain unconditional non-commutative topological group ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$, called the Weil-Arthur idèle group of K, which, assuming the existence of LK, comes equipped with a natural topological group homomorphism $NR{\frac{\varphi}{K}^{Langlands}}$ : ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$ → LK that we called the "Langlands form" of the global nonabelian norm-residue symbol of K. In this work, we present a detailed construction of ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$ and $NR{\frac{\varphi}{K}^{Langlands}}$ : ${\mathfrak{W}}{\mathfrak{A}}{\frac{\varphi}{K}}$ → LK, and discuss their basic properties.

A Hybrid ON/OFF Method for Fast Solution of Electromagnetic Inverse Problems Based on Topological Sensitivity

  • Kim, Dong-Hun;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.240-245
    • /
    • 2011
  • A new hybrid ON/OFF method is presented for the fast solution of electromagnetic inverse problems in high frequency domains. The proposed method utilizes both topological sensitivity (TS) and material sensitivity (MS) to update material properties in unit design cells. MS provides smooth design space and stable convergence, while TS enables sudden changes of material distribution when MS slows down. This combination of two sensitivities enables a reduction in total computation time. The TS and MS analyses are based on a variational approach and an adjoint variable method (AVM), which permits direct calculation of both sensitivity values from field solutions of the primary and adjoint systems. Investigation of the formulations of TS and MS reveals that they have similar forms, and implementation of the hybrid ON/OFF method that uses both sensitivities can be achieved by one optimization module. The proposed method is applied to dielectric material reconstruction problems, and the results show the feasibility and effectiveness of the method.

ON D-COMPACT TOPOLOGICAL SPACES

  • QOQAZEH, HAMZA;AL-QUDAH, YOUSEF;ALMOUSA, MOHAMMAD;JARADAT, ALI
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.883-894
    • /
    • 2021
  • The aim of this work is to introduce for the first time the concept of D-set. This is done by defining a special type of cover called a D-cover. we present some results to study the properties of D-compact spaces and their relations with other topological spaces. Several examples are discussed to illustrate and support our main results. Our results extend and generalized many will known results in the literature.

NEW KINDS OF OPEN MAPPINGS VIA FUZZY NANO M-OPEN SETS

  • V. KALAIYARASAN;S. TAMILSELVAN;A. PRABHU;C. JOHN SUNDAR
    • Journal of applied mathematics & informatics
    • /
    • 제41권3호
    • /
    • pp.525-540
    • /
    • 2023
  • In this paper, we introduce the concept of fuzzy nano M open and fuzzy nano M closed mappings in fuzzy nano topological spaces. Also, we study about fuzzy nano M Homeomorphism, almost fuzzy nano M totally mappings, almost fuzzy nano M totally continuous mappings and super fuzzy nano M clopen continuous functions and their properties in fuzzy nano topological spaces. By using these mappings, we can able to extended the relation between normal spaces and regular spaces in fuzzy nano topological spaces.

UTILITY OF DIGITAL COVERING THEORY

  • Han, Sang-Eon;Lee, Sik
    • 호남수학학술지
    • /
    • 제36권3호
    • /
    • pp.695-706
    • /
    • 2014
  • Various properties of digital covering spaces have been substantially used in studying digital homotopic properties of digital images. In particular, these are so related to the study of a digital fundamental group, a classification of digital images, an automorphism group of a digital covering space and so forth. The goal of the present paper, as a survey article, to speak out utility of digital covering theory. Besides, the present paper recalls that the papers [1, 4, 30] took their own approaches into the study of a digital fundamental group. For instance, they consider the digital fundamental group of the special digital image (X, 4), where X := $SC^{2,8}_4$ which is a simple closed 4-curve with eight elements in $Z^2$, as a group which is isomorphic to an infinite cyclic group such as (Z, +). In spite of this approach, they could not propose any digital topological tools to get the result. Namely, the papers [4, 30] consider a simple closed 4 or 8-curve to be a kind of simple closed curve from the viewpoint of a Hausdorff topological structure, i.e. a continuous analogue induced by an algebraic topological approach. However, in digital topology we need to develop a digital topological tool to calculate a digital fundamental group of a given digital space. Finally, the paper [9] firstly developed the notion of a digital covering space and further, the advanced and simplified version was proposed in [21]. Thus the present paper refers the history and the process of calculating a digital fundamental group by using various tools and some utilities of digital covering spaces. Furthermore, we deal with some parts of the preprint [11] which were not published in a journal (see Theorems 4.3 and 4.4). Finally, the paper suggests an efficient process of the calculation of digital fundamental groups of digital images.

On fuzzy semi-topological properties

  • Ha, Y.S.;Hur, K.;Moon, J.R.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.231-235
    • /
    • 1998
  • We introduce the concept of a fuzzy irresolute mapping and a fuzzy semi-homeomorphism. And we find some properties of then.

  • PDF