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ON A GROUP CLOSELY RELATED WITH THE
AUTOMORPHIC LANGLANDS GROUP

KAziM ILHAN IKEDA

ABSTRACT. Let Ly denote the hypothetical automorphic Langlands gr-
oup of a number field K. In our recent study, we briefly introduced a cer-
tain unconditional non-commutative topological group # < %, called the

Weil-Arthur idele group of K, which, assuming the existence of L g, comes
Langlands

equipped with a natural topological group homomorphism NR
Wszfl% — Lk that we called the “Langlands form” of the global non-

abelian norm-residue symbol of K. In this work, we present a detailed
Langlands

construction of W(Qf% and NR%; : V/,QKI% — L, and discuss their
basic properties.

1. Introduction

This work is a detailed and extended account of the first part of our short
communication presented in the Seoul ICM 2014, which corresponds to Section
8 of [12].

Let K be a number field and Lg the hypothetical automorphic Langlands
group, also called the absolute Langlands group, of K!. As pointed out by
Arthur [1], the existence of this universal group Lk attached to the number
field K has been conjectured by Langlands [19] in order to represent the functor
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We can more generally assume that K is a global field and develop the ideas presented
in this work under this assumption. However, we shall refrain to do so and only assume that
K is a number field in this work. Regarding the automorphic Langlands group of a function
field, look at 1.6.2 of [4].
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22 K. I. IKEDA
from the category grprﬁd of connected (quasisplit) reductive groups over K to
the category Set of sets defined by

G ~ Caut (G(AK)),

where for a connected (quasisplit) reductive group G over K, the set
Caut (G(Ak)) denotes the collection whose elements are the equivalence classes
of automorphic families ¢° = {c, | v ¢ S} of semisimple G(C)-conjugacy classes
in the L-group “G(C) = G(C) x Wx of the reductive group G over K in Weil
form, where G denotes the dual of G. In other words, it is conjectured that,
there must be a topological group L such that, for each connected (quasisplit)
reductive group G over K, a bijective correspondence

Hom(Lx,*G(C)) 2 Caut(G(AK))

should exist, and the global Langlands reciprocity principle over K, in the most
general sense, states that, this bijection satisfies the “naturality” conditions.
Currently, the conjecture on the existence of Ly stated in [19] is one of the
most important and central open problems in the Langlands Program.

In this direction, Arthur [1] proposed a candidate L' for the hypo-
thetical group Lg. However, Arthur’s construction is conditional; namely, his
construction lives in the “ideal Langlands universe”, where the local Lang-
lands reciprocity principle, the global Langlands functoriality principle, and all
related conjectures are valid.

On the other hand, in an attempt to develop global non-abelian class field
theory [12], we have introduced [12, Definition 8.1] a certain concrete non-
commutative topological group # of 1% and called it the Weil-Arthur idéle group
of the number field K. Moreover, without proving, we stated [12, Theorem 8.4]
that, if the hypothetical locally compact group Ly exists, then the topological
group ¥ <of % comes equipped with a natural topological group homomorphism
planglands o

NR% Wl — Ly,
unique up to “local Lg-conjugation”, which we have called the “Langlands
form” of the global non-abelian* norm-residue symbol (or map) of K. Fur-
thermore, we have conjectured [12, Conjecture 8.5] that this topological group
homomorphism is open and surjective.

The first aim of this work is to provide a detailed construction of the topo-
logical group Wszf/[% and a proof of Theorem 8.4 of [12], which appears as
Theorem 4.1 in the current text. The second aim of the paper is to list the
basic properties of the global non-abelian norm-residue symbols in Langlands

2Instead of saying “non-abelian global/local ...” as in [12,13] and in [15,16], we shall
say “global/local non-abelian ...” from now on, which seems to be a better terminology.
In fact, we have a general theory—the non-abelian class field theory—which in the global
fields case is constructed in [12,13] and, which in the local fields case is developed in [15,16].
Moreover, the global theory and the local theories are compatible and their abelianizations
are the global class field theory and the local class field theories respectively.
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form following the same lines of the Lahore paper [13]. We, however, find it
appropriate to discuss the compatibility of our theory with Arthur’s topological
group LA in a separate work.

The plan of the paper is as follows: The next two sections are the background
material and respectively summarize the parts of [12,13], [15,16], and [1,5,18]
that are used in our work. More precisely, in the next section; that is, in
Section 2, following the ideas and methods of [12] closely, we shall present a
detailed construction of the Weil-Arthur idéle group # o/ % of the number field
K. In order to do so, we shall briefly recall restricted free topological products
of topological groups introduced in [12,13] and the local non-abelian class field
theory in the sense of Koch [15,16] (also look at [21]). Along the way, we
shall discuss the relationship between the topological groups “//;z/% and ¢ I%
both attached to the number field K, where ¢ I% denotes the non-abelian idele
group of K studied in [12,13] in detail. Next, in Section 3, we shall review
the formal properties of the hypothetical automorphic Langlands group Ly of
K following [1,5,18]. Finally, in Sections 4 and 5, we shall first construct the
global non-abelian norm-residue symbol

Langlands

NR} W s — L,

of the number field K in Langlands form in Theorem 4.1, and propose a sur-
jectivity conjecture in Conjecture 4.5, and then list the basic properties of this
topological homomorphism.

2. The Weil-Arthur idele group “//4271% of a number field K

In this section, we shall construct the Weil-Arthur idele group Wﬂ% of a
given number field K. In order to do so, we shall first review restricted free
topological products of topological groups, and then recall the local non-abelian
class field theory in the sense of Koch. Finally, we shall introduce and study
the basic properties of the Weil-Arthur idele group 7/,527% of the number field
K.

2.1. Restricted free topological products of topological groups

The idea of restricted free topological products of topological groups and
their applications to number theory first appears in the works of Miyake [22]
and Neukirch et al. [24], where the topological groups under consideration are
profinite. In this subsection, we follow closely [12, Section 2] and [13, Subsection
2.1], and use this occasion to clarify the parts in the works [12,13] related to
the direct limits of topological groups.

Let {G;}icr be a collection of topological groups. Let *;c; G; denote the
free topological product of the collection {G;}icr, which exists in the category
of topological groups by Graev [11], also look at [23]. The group topology
on *;c; G; introduced in [11] is called the Graev topology of *;c; G; in this
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work. The topological group *;c; G; comes equipped with a natural continuous
embedding
Li, Gio — Xk Gi
il

for each i, € I, and satisfies the following universal mapping property: Let
H denote a topological group. If for every i, € I, ¢;, : G;, — H is a con-
tinuous homomorphism, then there exists a unique continuous homomorphism
¢ : *,e1 G; — H such that ¢ o;, = ¢;, for every i, € I. That is, the following
triangle

*ie1 G;

EI!¢

Pio
H
is commutative for every i, € I.

Assume that the index set I is countable. If, for each i, € I, the underlying
topological space of G;, is furthermore a k,-space® [9], then by Ordman [25,
Theorem 3.2], the free topological product *;c; G; is a k,-topological group as
well, and furthermore ¢;, (G;,) = G, is a closed subgroup of *;c; G; for every
i, € I. Fix now a finite subset I, of the index set I. For each i, € I — I, fix
furthermore an open subgroup O;, of G;,. As closed subspaces of a k,-space
are also k, by [9, Fact 14], the open subgroup O;, is a k,-topological group
for every i, € I — I,. Now, for every finite subset S of I satisfying I, C .5,
introduce a topological group ¥s by the free topological product

= (10)-(2)
¢S icS

of the topological groups O; for ¢ € I — S and of G; for ¢ € S, equipped with
the canonical continuous embeddings

). ) Oi, (o &5)
Lio : { Gio (io c S) — gs,

defined for all 4, € I. Observe that, by Ordman [25, Theorem 3.2], the topo-
logical group ¥s is k. For finite subsets S and T of I, satisfying I, C S C T,
there exists a unique continuous homomorphism

nggs — Yr,

3A topological space X is called a k,-space with k,-decomposition X = Ufil X, if the
following properties hold: X is Hausdorff; X is covered by {X;}5°,; each X; is a compact
subset of X and X; C X;41 for ¢ = 1,2,...; and Y is closed in X if and only if Y N X, is
closed in X for every ¢ = 1,2,.... As pointed out in [9], kw-spaces are a generalization of
countable C'W-complexes.
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which is the inclusion mapping ¥s — ¥, defined naturally by the universal
mapping property of free topological products of topological groups. Moreover,
the collection {{45; 3 Y — %T} 1 cscp> Where S and T runs over all finite
subsets of T satisfying I.o € S C T, forms a direct system of k,,-topological
groups, where the directed set {S} is countable, as I is a countable set.

Notation 2.1. Let G be a (quasi-)topological group. The underlying abstract
group of G is denoted by G and the underlying topology of G by T¢.

The direct limit
Hglgs =¥
S

of the direct system {¥s; 73 : 95 — 9r has a natural quasi-topological

}IOOQSQT
group? structure equipped with the canonical continuous homomorphisms

Cstgsﬁg

defined for all finite S C I satisfying I, C .S, where the underlying topology
Ty of 4 is the direct limit topology lig’ﬁgs on¥ = hg% g, which is defined by
s s

declaring X C ¢ to be open if X N¥g is open in ¥ for every S. Moreover, as

Ys is a k,-group for every S, by Glockner et al. [10], the direct limit topology

Ty on & coincides with the final topology on ¢ with respect to the family

of mappings {cs : Y5 — ¥}s, which is defined as the finest group topology

on ¥ that makes the mappings cg : Y5 — ¢ continuous for all S. Thus, to

sum up, ¢ = @%g endowed with the direct limit topology To = hgl@s is a
s s

topological group equipped with the canonical continuous homomorphisms
Ccs : gs — 9

defined for all finite S C [ satisfying I, C S. Furthermore, as ¥s is a k,-group
for every such S, the topological group ¢ is Hausdorff as well.

The restricted free topological product of the collection {G;}ies of ky-topo-
logical groups G; where ¢ runs over a countable index set I with respect to
the collection {O; }ier—r. of open subgroups O; of G; for i € I — I, which is
denoted by *;_;(G; : 0;), is defined by the direct limit

/ .
>€l<I (Gi:0;) := h%}ngs =9

(3

of the direct system of k,-groups {%S;Tg 1 Y5 — %T}I cscp and it has a
natural Hausdorff topological group structure. We maintain the notation and
the assumptions introduced so far till the end of this subsection.

4a triple (Q, p, T) consisting of a set @ together with a binary operation p: Q X Q@ — @
and a topology T on Q is called a quasi-topological group, if @ is a group under p; if the
mapping p: Q X Q — @ is separately continuous with respect to 7; and if the inversion map
on Q with respect to u defined by x — z~! for all x € Q is continuous with respect to 7.
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The restricted free topological products of countable collections of k,-topo-
logical groups have the following universal mapping property.

Theorem 2.2 (Universal mapping property of restricted free topological prod-
ucts). Let H be a topological group (not necessarily k,,). Assume that, for each
i, € I, a continuous homomorphism

(bio : Gio — H

is given. Then, for each finite subset S of I satisfying I C S, there exists a
unique continuous homomorphism

(;5,5 : gg — H
such that
¢s o Ll(-os) = i,

for every i, € I, and a unique continuous homomorphism
¢=liﬂ¢stliﬂg_§'=g—>H
s s
satisfying

¢5=¢0631ggc—s>gﬁ>ﬂ'7

where ¢g : Ys — 4 is the canonical continuous homomorphism defined for
every finite subset S of I satisfying I, C S.

Proof. Look at the proof of Proposition 2.1 in [12]. O

For each i, € I, setting ¢¥;, = G;,, there exists a natural continuous homo-
morphism

(2.1) g, %, 9

defined explicitly via the commutative triangle

Ys
y
v, cs
Qio
<G

where S is a finite subset of [ satisfying I, C S and i, € S. It turns out that the
homomorphism ¢;, : 4, — ¢ does not depend on the choice of S [12, Section
4]. Moreover, keeping the notation and the assumptions of Theorem 2.2, we
have the following theorems:



ON A GROUP RELATED WITH THE AUTOMORPHIC LANGLANDS GROUP 27

Theorem 2.3. The triangle
(2.2) @

Qio

s commutative.

Proof. In fact, for any finite subset S of I satisfying I, C S and i, € S, the
identities

$0g, =gocsou’) =psou”) =g,
hold, proving the commutativity of the triangle (2.2). O
Theorem 2.4. Let
¢ 99—+ H
be a continuous homomorphism such that
¢ oqi, = bi,

for every i, € I. Then
¢ = ¢.
Proof. Let ¢' : 9 = ligngs — H be a continuous homomorphism. Then
s

= lim ¢,
S

where ¢'y = ¢’ ocg : Ys 5, hg%g =9 % H for any finite subset S of I
s
satisfying I, C S. Moreover, for such an S,

s
Psou) =¢ ocsory) =¢'og, = ¢,
by assumption, and

(5) _

ps0ulP =gocsol? =gog, =0,

Therefore, by the universal mapping property of free topological products of
topological groups, ¢ = ¢g, and
¢’ = lim ¢ lgqﬁs = ¢,

limy ¢
s

which completes the proof. (I
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Let G and H be two topological groups, and
¢&:G—H

be a continuous homomorphism from G to H. Recall that, a continuous ho-
momorphism

¢:G—-H

from G to H is said to be H-conjugate to £ : G — H, denoted by & ~g &, if
there exists h € H such that

¢ =0,

where ¢, : H =5 H is the inner-automorphism of H defined by the h-conjugation
as tp(z) = h=txh for every x € H. Clearly, if & ~p &, then ker(¢') = ker(€).

For the next definition, which will be used from Section 3 on, and for the
theorem following it, we maintain the notation and the assumptions of Theorem
2.2.

Definition 2.5. Let
¢:9 — H

be a continuous homomorphism from ¢ to H. A continuous homomorphism
¢ 9~ H
is said to be locally H-conjugate to ¢ : ¢ — H if
b5, = ¢ 0qi, ~u doq, = b,
for every i, € I.

Theorem 2.6. Let
0,9 9~ H

be two continuous homomorphisms from 4 to H. If ¢ and ¢’ are locally H -
conjugate, then

ker(¢) = ker(¢').

Proof. As ¢ and ¢’ are locally H-conjugate, ¢poq;, ~p ¢’ og;, for every i, € I.
Therefore, ker(¢ o ¢;,) = ker(¢’ 0 ¢;,). On the other hand, for any finite subset
S of I satisfying I, C S,

(#s)i, = b5 © Lgf) =¢ocgo Lgf) =¢ogq,
~g ¢ oq,=¢ ocgo LZ('US) =¢go LEOS) = (¢%)i,
for every i, € I. Thus, ker((¢s),) = ker((¢%s):,), which proves that

U = |Jker(6s):) = | ker(ds)) =: U

iel el
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and that ker(¢s) = ker(¢) as ker(¢g) is the topological closure of the normal
closure in %5 of U and ker(¢Y) is the topological closure of the normal closure
in 9s of U’. Hence, the following equalities

ker(¢) = ker(lim ¢s)
- li%(kir(aﬁs))
-~ l%(ker(cé’s))
- ker(l'% ¢s) = ker(¢')

hold, proving ker(¢) = ker(¢’). O

The following theorem, which generalizes Theorem 2.5 of [12], is about the
abelianization, that is the maximal abelian Hausdorff quotient, of a restricted
free topological product of a countable collection of k,-topological groups.

Theorem 2.7. The maximal abelian Hausdorff quotient (*;eI(Gi : Oi))ab of
the restricted free topological product *.;(G; : O;) of the collection {G;}icr of
k., -topological groups G; where i runs over a countable index set I with respect
to the collection {O;}icr—1.. of open subgroups O; of G; for i € I — I is

!/ !
isomorphic to I I _GI(G?b : O2P) as topological groups, where I I o
K3 K3

O2P) denotes the restricted direct topological product of the collection {G2};cr
with respect to the collection {O}ier ...

(L

Proof. We first recall that the abelianization; that is passing to the maximal
abelian Hausdorff quotient commutes with the direct limit as the abelianization
functor ab : Grp*P ~» AbP from the category of topological groups Grp*P to
the category of abelian topological groups Ab'"P is left adjoint to the inclusion
(=forgetful) functor inc : Ab*™P ~» Grp™P from Ab*P to Grp*P [2, Introduc-
tion|. Therefore, there exists an isomorphism of topological groups

(Kier(Gi 2 00)™ = (lim %)™ ~ lim 92",
S S

where S runs over all finite subsets of I containing I.,. Here, the direct limit
lig s %gb is defined with respect to the connecting morphisms

(T g2 g
defined by
(5 s 29s — 7T (2)95

for every x € 95, where S and T are finite subsets of I satisfying I, C S C T,
and has a Hausdorff topological group structure with respect to the direct limit
topology h_n>1 5 7?431), as 9P is a k,-group with respect to the quotient topology
@sb induced from the Graev topology Ty, of ¥s, by Morita’s result [9, Fact
11], for every such S.
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Next, we recall that [3, Proposition 21, p. 234], if G, is a dense subgroup
of a topological group G and H, 4 G,, then G,/H, = G/H,. Thus, re-
turning to our discussion, the abelianization 92> = /95 of 95, where 95
denotes the closure ?g of the 15" commutator subgroup ¢4 of ¥s, is the closure

9s/9% of the quotient group ¥s /9% which is the weak direct topological prod-
uct H i2s O x H s G2 of the collection {OP},¢5 U {G#"};cs. That

is,

ab
ab _ (% O, * G, = I1" o2 Y Gab
9= (3,00 (x,00) =[0I "

ies i¢s i€S
proving that
gt =10 < [ e,
i¢S i€S

as the weak direct topological product of a family of topological groups is
dense in the direct topological product of the same family, which completes the
proof. O

Remark 2.8 (On abelianization—Part I). There seems to be two types of abelian-
ization mappings

9 - [[ @ 0.

iel
The first one
a ~ 4
s:9 g =~ TG0
(Thm.2.7)

i€l
via computing the maximal abelian Hausdorff quotient 4P of ¢, and the sec-
ond one as the unique continuous homomorphism

!/
a: 9 — [[ (@G0
icl
satisfying
a04g;, = aj,,
where
€ig ZQ?b /
ai, : Gy, ™ G === [[ (G 0)
il
for every i, € I, whose existence and uniqueness is guaranteed by the universal
mapping property of restricted free topological products and by Theorem 2.4.
Now, we claim that
s=a,
which also answers a question asked in [13, footnote 5. By Theorem 2.4, it
suffices to check that
Si, = Qig vio el

o
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Let i, € I, and 5;, a finite subset of I such that I, C §;, and i, € S;,. For
any z;, € G;,,

i, (€1,) = s04i, (25,) = socs, 007 (2;,) = s([18%) (i, )]) = 07 (2:,)95, ],

where L(SiO)(xio)ggi € ¥ and

aoq, (zi,) =, (1:,) = 1, (2:,G5.) = ¢2°(2:,G5.) = [(17))2 (a2, G5,

where (L(fj°))ab(xiono) = Lgfj°)(xio)%§j . Thus,

K3
si, (,) = ai, (2i,), "zi, € G,
proving that s = a.
2.2. Examples of k,-groups (Part I)

Let hg and ax denote the sets of finite (henselian) and infinite (archimedean)
places of the number field K respectively. For v € hig Uag, the completion of
K at the place v is denoted by K,, as usual. In case v € hg, denote the ring of
integers of the henselian local field K, by Ok, and its unique prime ideal by
pr, . The residue class field of K, is denoted by kg, , which is a finite field with
gr, elements. For v € hx Uag, let Gg, and Wi, denote the absolute Galois
group and the absolute Weil group of the local field K, respectively. Recall
that, Wk, is a locally compact Hausdorff group endowed with a continuous
homomorphism

ﬂKU : WKU — GKU
having dense image. Moreover, the Weil group topology 7}¥Z ell of W, is not
the same as the topology on W, = induced from the Krull topology 7}2‘““ of
Gk, .

Recall that [26], in case v € hg, there exists a canonical surjective and
continuous homomorphism

0K, : GKU - GHKU = <(I)RK1, >(2 2)

from the absolute Galois group G, of K, to the absolute Galois group G
of kk,, where ®., € Gy, denotes the Frobenius automorphism of Kk, ,

v

which is a topological generator of G, —(~ 2) The the topology 7}?19“ of
Wk, is defined as the weakest topology on W, = Q;(i (<<I>HK“ >) that makes

the sequence

QK

(2.3) 1= Ig, = Wk, — (Pry, ) — 1

topological short exact, where the inertia group I, of K, is equipped with the
profinite topology induced from the Krull topology T}({j““ of Gk, and <(I>,Q Kv>
(~ Z) equipped with the discrete topology. Thus, there exists a homeomor-
phism

Ix, xZ = Wk,
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defined by
(t,1) = 1og, (R, )"
for every ¢ € I, and n € Z. Recall that, the discrete space Z is k,, as any

locally compact Hausdorff space X is k,, if and only if X is o-compact [9, Fact
10]. Moreover, the continuous projection map

Ik, xZ—Z

is a k-mapping® from the Hausdorff space I, x Z onto the k,-space Z. There-
fore, Ix, x Z is a k,-space. As Wy is homeomorphic to Ik, X Z, it follows
that the absolute Weil group Wx,, of K,, is a k,, group.

Now, if v € ax, we have two cases. In case v € ak c, that is v is a complex
archimedean prime of K, then K, = C and the absolute Weil group W¢ of C
is defined as the topological group We = C* equipped with the trivial map
Bc : We = Gc. In the remaining case v € ax R, that is v is a real archimedean
prime of K, then K, = R and the absolute Weil group Wgr of R is defined
as the topological group Wg = C* U jC*, where j2 = —1 and jzj~! = z for
every z € C*, equipped with the map fr : Wr — GRr defined by fr(C*) = idc
and Br(jC*) = “complex conjugation” map on C. Note that, in both cases,
We and Wr are locally compact and Hausdorff groups, which are furthermore
o-compact, proving that they are k,-groups [9, Fact 10].

Now, let G be a locally compact Hausdorff and o-compact group. Then, G
is a ky,-group [9, Fact 10]. Therefore, the direct product Wy, x G is a k,-group
for every v € hx Uag, and as Ik, is an open subgroup of Wy , the direct
product I'x, x G is a k,-group for every v € hg [9, Fact 4]. Thus, the following
theorem follows.

Theorem 2.9. Let G be a locally compact Hausdorff and o-compact group.
Then:

— The direct product Wk, x G is a k,,-group for every v € hg Uag;
— The open subgroup Ik, x G of Wi, x G is a k,,-group for every v € hg.

2.3. Local non-abelian reciprocity map of K, for v € hg

In this subsection, we follow closely [15,16]. For every v € hg, fix an
extension ¢k, of the Frobenius automorphism Frg, of K" to K;°; namely,
fix a Lubin-Tate splitting px, over K, [17]. Generalizing [6] and [17], the
“Galois form” of the local non-abelian reciprocity law of the non-archimedean
local field K, in the sense of Koch is constructed [15], which is an algebraic
and topological isomorphism

)Galms ] (¢xy,)

(LPK ~
Py Gk, — Vi,

5Recall that, a map f : X — Y from a topological space X to a topological space Y is
called a k-mapping, if the preimage f~1(C) of any compact subset C of the target space Y’
is compact in the source space X.
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between the absolute Galois group Gk, of the local field K, and a certain
topological group V¢ (oxc “) depending only on K, and on the Lubin-Tate splitting
YK, over K,.

In what follows, we shall however consider the “Weil form” of the local
non-abelian reciprocity law of K,,, which is a topological group isomorphism

Weil
(pry) . ~ (¢xy)
(I)Ku v : WKU — sz“ v

between the absolute Weil group Wk, of K, and a certain dense subgroup
ZV%JK”) of V(Iff” The constructions in [15] of the topological group V(“’K“)

and its dense subgroup ZV%JK ») use the theory of APF-extensions and the
fields of norms introduced by Fontaine and Wintenberger [7,8].

Moreover, there exists a subgroup 1V§‘(DUK“ 2 of ZV(I}DUK“) such that, the “Weil

(prc,) Weil ~ )
(I)KUK : WKU — szvK

form” of the local non-abelian reciprocity law
of K, induces an isomorphism
(b(I?KU)Weil

v

: W* = 1V @K”)O

of topological groups [16]. Here, WI%U is the 0" ramification subgroup of W,
in upper numbering. Recall that, the upper ramification filtration {Wf(v}eeR>,1
of Wk, is defined by Wg = Wk, NG% , where G% is the ' ramification
subgroup of Gk, in upper numbering for e € R>_;. Thus, WK = Ik, , the

inertia subgroup of Wy, .

v

)Galois

The reason why the topological isomorphism CD%JK“ Gk, — ngf“),

or its Weil form @gff“)well K, — ZV(;UK“), deserves to be called the local
non-abelian reciprocity law of K, is that, it is “natural” in the sense that the
non-abelian analogues of the local abelian class field theoretic properties, such
as “existence”, “functoriality”, and a certain “ramification theoretic” property,

are all satisfied [15,16].

Remark 2.10 (On abelianization—Part II). Recall that [15], for every v € hg,
the topological group V%{DUK“) is defined as a projective limit

(WKU ) L vgp/l{(v

over certain type (look at Section 6 of [15] or Subsection 3 2 of [16]) of infinite
APF Galois extensions L of K, satisfying K,, C L C KwK” with f(L/K,) =
[k : kK,] =dand L, = LN K", where

Vi) = KX INL i, L < U3 e /Yign,,

relative to the connecting morphisms

C "7 Coleman (K, (pr,
(eLF/TM 7«/V/1v11 ) : VLW/I;( V];j{](va
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where M is an infinite APF Galois extension of K, of the same type as L such

d/
that K, € M C K. ** with f(M/K,) = [k : kg,] = d and M, = M N K",
satisfying M C L and d' | d. Here, the arrow

err K5 NL, i, LY = K /N, i, MY
is the natural morphism constructed via the existence theorem of local class
field theory, and the arrow

"7 Coleman
M Uiy aeny/ YL = Ui,/ Yo/,
is the Coleman norm map from L to M introduced in Lemma 2.21, and the
equations (2.47) and (2.48) of [14].
Observe that, by [6, Remark 4], the kernel of the continuous surjective ho-
momorphism

(24) idgxn, g X Pri ViR o KNy g, LY X UL, /Ny, Us

is the commutator subgroup (V(LW/’;(” ) of V(LCP/’;(“ Therefore, the continuous

surjective homomorphism (2.4) induces an isomorphism of topological groups
(2.5)

ab
(i iy e % Pz, ) o (VD) 25 KNG e, I % Ur, /Ny, Us

as the groups under discussion are compact and Hausdorff. Moreover, the
diagram

1dK1>}< /NLO/K,,L;( XPrZO(LO:KU)

ab
Vi) (V) e K Ny, L % ULy Ny, U

v abp /K, (idXPrZO)
oleman man \2b CFT
(eL /Mo ./VLC/I (PLO/MO /VLC/‘RIF any® (Lo /Mo NLo/M,)
b
vlery) L (Gles) )~ g Ny e M Uy, /Noaa, Ut
M/Ky ap M/K, (idxPrg; )*U “

P M,=K,
dK Nty e XPrag ( )

is commutative [14, p. 130, (ii)]. Thus, passing to the projective limits, there
exists a continuous surjective homomorphism

idg x limPry : Jim Vi75e) = lim (K /Np, e, LY % Us, /Ny, Up),
L L L

viflf(v) ZXUK,U
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which factors as

idle'mL Przo

ab ~

yler) s lim (v(% ) ~ ZxUg, .

K T A L/K P Y Ko
v l}mL abr/x,, L / IEmL(lquf /NLO/KULc>7< XPrLD)

Thus, the following diagram

ab ab Artg,, PRy
Gk, G¥%, = K
. )Galois .\ Galois .
cpiff‘v) ? (@17;‘}1’)) * Oh)"‘b ¢ | ¢k, determines 7k,
V(‘PKU) (v(@Ky>)ab ~ Z X UK
K, ab Ko lim (id « XPrz )* v
AL S /NLg /Ky o Lo

is commutative, where the commutativity follows from the construction of the
Galois ~
local non-abelian reciprocity law @%)K“) Gk, — V(Iéx") of K, in Galois

form and from [6, Remark 4].

Thus, via Remark 2.10, the “local non-abelian class field theory” can be
summarized in terms of the following tables:

Local non-abelian C.F.T. (¢x, fixed) Local abelian class field theory
Gk, Vi Gs? Z x Ux,
Wk, ZV(W(“) ab, Wab Z x Uk,
Wi v W Uk,

Wi, se(—1d| v Wi‘?l ,8e(i—1,4]| U,

: : (exc,,) Galois (pry) ~
Following [12], denote the inverse @ 1 Vg — Gk, of the

)Ga1015 )

local non-abelian reciprocity law <I>(<pK“ Gk, — V(LPK“ of K, by

{. Gdl(ns . V(K‘{’Ku _) GK

and call it the “Galois form” of the local non-abelian norm-residue symbol of
K,,. Likewise, the “Weil-form” of the local non-abelian norm-residue symbol

{0, K 3 Vel s vme) 2y
Weil -
of K, is defined by the inverse <<D%}KU) > : zV%f(”) = Wk,

eil

W ~
of BIF) T W, T p Vi),
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2.4. Examples of k,-groups (Part IT)

Recall that, Theorem 2.9 of Subsection 2.2 states that W x G is a k,,-group
for every v € hx Uag, and Ix, x G is a k,-group for every v € hg, where
G denotes a locally compact Hausdorff and o-compact group. In case v € hg,
the “Weil form” of the local non-abelian reciprocity law

Weil -~
fbg?f“) Wk, — zvg?j(“)

of K, reviewed in Subsection 2.3, naturally defines an isomorphism

Weil N
)T X idg : Wi, x G 5 2V ) x @

of topological groups, which induces a topological group isomorphism

Weil ~ °
) idg t WE x G 2 V2« q,
where WI% = Ik, . Therefore, ZV%&K”) x G and 1V(I€)K“ )2 G are k.,-groups.
So we have the following theorem.

Theorem 2.11. Let G be a locally compact Hausdorff and o-compact group.
Then ZV(I?UKU) x G and 1ngf“ )2« G are k., -groups, where v € hy.

2.5. Weil-Arhur idele group Wﬂ% of K

For every v € hx Uag, the absolute Langlands group L, of the local field
K, is defined as the absolute Weil-Arthur group WAk, of K,,, where:
— WAKU = WKU X SU(2) ifve h[{;
- WAK,U = WKU ifveag.

Remark 2.12. Note that, instead of the traditional absolute Weil-Deligne group
W Dk, of the local field K, in this work we use, following Langlands [20], the
absolute Weil-Arthur group W Ak, of K,, defined as above.

Observe that, by Theorem 2.9, for every v € hgUag, the absolute Langlands
group Ly, of the local field K, is a k,-group, and for every v € hg, the open
subgroup Ix, x SU(2) of Lk, is k.

Hypothetically, there is a global counterpart of the collection of topologi-
cal groups {Lk, }vehguax called the automorphic Langlands group Lk of the
number field K (the absolute Langlands group Lk of K). The expected formal
properties of this conjectural topological group Ly attached to K are listed in
Section 3. In this subsection, we shall introduce an unconditional topological
group 7/%% attached to K closely related with this hypothetical topological
group L.

For each v € hg, fix a Lubin-Tate splitting ¢k, over K,. The “Weil-form”
of the local non-abelian norm-residue symbol

Weil . (pry) ~
{o, K, oy ‘ZVKU v — Wk,
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of K, induces an isomorphism

{o, K, phonslands .= (o K AWel s idgy ) 1 2V %) x SU(2) & L.,

the “Langlands-form” of the local non-abelian norm-residue symbol of K.
Note that, by Theorem 2.11, the topological groups zvgff“) and 1V¥UK“ 2 as
well as ZV%}K”) x SU(2) and 1V§}if{” 2 SU(2) are all k. Now, the “thickened”
version ¥ o/ % of the non-abelian idele group # I% of the number field K, where
I % is the Hausdorff topological group defined as the restricted free product

Sie= X ’(ZV?Q)K“ (V) )*W*”l*W*72

vEhg

of the collection {ZV(IfUK”)}uehK U{WK, }oear

0
{1V(I€)K”)7}vehk introduced in [12], is defined as follows:

with respect to the collection

Definition 2.13. For each v € hg, fix a Lubin-Tate splitting ¢, and let
= {pK, tveny-

— The Hausdorff topological group W,Q{% defined by the restricted free
product

0
witgm w2V xsUR) v sum ) e g

vehg
of the collection {ZV(“OK“) x SU(2) }oenx U{WE, }pear
the collection {1V(¢K” x SU(2) }oehy is called the Weil-Arthur idéle
group of the number field K
— The finite (=henselian) part Wﬂ%yh of V/ﬂ% is defined by

with respect to

Wdfn= % ’(zvﬁff“) x SU(2) : Nﬁ}"fv x SU(2 ))

vehg
and;
— The infinite (=archimedean) part Wﬁ%a of # o/ is defined by
]
WAL o= WR™ * WE™.
Here, as usual r; and r5 denote the number of real and the number of conjugate

pairs of complex embeddings of the number field K in C, respectively.

As in Subsection 2.1, for every finite subset S of hx Uag satisfying ax C S,
the k. -topological group (Wﬂﬁ)g is defined by

(7 R)s = ¥ (Vi (V3R X SU(2)) ¢ < * (zvgﬁfv)xsum)))*%ﬂ;a,

vES—ag

and following Theorem 2.2,

cs: (W dg)s — WAy
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denotes the canonical homomorphism.
Note that, the topological group 7/42%% is an “extremely big” group, but its
definition depends only on the number field K.

2.6. Basic properties of the Weil-Arhur ideéle group 7/@7%— of K

b
The following theorem describes the abelianization Wﬂ%a of the topolog-
ical group 7/%%.

ab
Theorem 2.14. The abelianization W&Z{% of the topological group 7/42%1% is
the idéle group Ik of K.

Proof. Follows directly from Theorem 2.7. ]

The proof of the next theorem depends on the following “open mapping
theorem” from the general theory of topological groups.

Lemma 2.15. Let G and H be two topological groups such that, there exist a
continuous and surjective homomorphism

¢:G— H,
and a continuous homomorphism

s:H—->G
such that

¢pos=idy.

Then ¢ : G — H is an open mapping.

Proof. Let U be an open subset of G. First observe that, as s : H — G is a
continuous mapping, s~1(U) is an open subset of H. Moreover, the condition
¢os = idy implies that s71(U) C ¢(U). Next, observe that, for any ¢ € ker(¢),
the inclusion s~}(Ue™!) C ¢(U) holds. Finally, in case s~ 1(U) C ¢(U), for
any y € ¢(U) — s~ '(U), there exists , € ker(¢) such that y € s7'(Ue, ).
In fact, there exists * € U such that ¢(z) = y and y ¢ s~ '(U); that is,
s(y) ¢ U. Therefore, z # s(y), while ¢(x) = ¢(s(y)) = y. So, there exists
1 # e, € ker(¢), such that s(y)e, = = € U, which shows that y € s~ (Ue; ).
Thus, ¢(U) is an open subset of H, as s‘l(UEzjl) is an open subset of H, for

every y € ¢p(U) — s~ 1(U). O
Theorem 2.16. — There exists a surjective, open and continuous homo-
morphism

fe W — Fi

defined uniquely by the continuous homomorphisms

(fe)y: (W de)y = I
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given by

qu 0 idwy , v € ag;
— There exists a continuous homomorphism

og: I Wy

GuoPr _ex,y, vEhg;
(f;)v—{ 2V

satisfying
e e .
froog =id e
Proof. For each v € hg Uag, there exists a natural topological group homo-
morphism defined by

Pr
( )
ZV;UK’“

G OPT _ton, t (W lR)s = 2VEE) xSU2) Ky Vi) = (78, 2 g2,

Ky

if v € hg, and by

id
guoidwy, : (W l'e)y = Wi, —=2 Wi, = ()0 2 72,

if v € ag. Therefore, by Theorem 2.2 on the universal mapping property of
restricted free products and by Theorem 2.3, there exists a continuous homo-
morphism

fe Wl = Ji
defined uniquely by the continuous homomorphisms

(fE)o: (W dR)w — Fi
given by

Koy

quoPr _en), vE€Ehg;
(f}f’)v:{ zV

qu © idyy , v € ag.

To prove the surjectivity of this morphism, it suffices to observe the existence
of a continuous map

og: JE— Wy
satisfying

freog =id 4e.

In fact, again by Theorems 2.2 and 2.3, there exists a unique continuous ho-
momorphism

og: Jie =Wy
defined by the continuous homomorphisms

(%) (Jih = W g

given by

Ky 01

Qv © idwy, v € ag.

1 0
QUO(id (rK )(’)X < >)a UEhK;
zV oY

() =
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Now, for v € hg Uag,
(Fk oo = (o oR) 0 d
= fr o (0% o)
= fic© (@R)v-
Thus, if v € hg, then
(FR o oR)w = [ 0 (0R)

. 1 0
— ool gen@ < (g 1))

Ky

— ) genn@ % (g 1))

. 1 0
=qu© Przv(szv) o (id V(W{“)(.> X <0 1))

ZV Ky

=g, o0id
Qv ZV;PK,U )

v

= Gu,
and if v € ag, then
(fRooR)e = fiio (0%)u
= f}% 0@y O idWKU
= (f[%)v © idWKv
= qu 0 idwy, oidw,,
=q, © idWKU
= Qu-
Therefore, by the universal mapping property of free products of topological
groups and by the construction of the natural homomorphism (2.1),
(fz% © U}%)S =Cs,
where S is a finite subset of hx U ax such that ag € S and v € S. Now,
passing to the direct limits, the identity
frooe :1%05 =id ¢

follows. Finally, the openness of the continuous homomorphism f[% WA 1% —

4 ]% follows from the open mapping theorem stated as Lemma 2.15, which
completes the proof. ([

Proposition 2.17. The kernel LS”I% = ker(fj%) of the surjective and continuous
homomorphism

fo Wy — Ji
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. ®
is a closed normal subgroup of W o/ .

Proof. Note that, ¢ 1% is a Hausdorff topological group. Therefore, <1 /§> isa

closed subgroup of ¢ 1% As f}% WA % - 7 I% is a continuous homomorphism,
5@% is a closed normal subgroup of # .o % by Theorem 2.16. (]

So, maintaining the notation introduced in Theorem 2.16 and Proposition
2.17, and their proof, the following corollary follows naturally:

Corollary 2.18. The topological group 7/&/}% sits in the split topological short
exact sequence

inc. f£
| —— S =W g == I 1

Ll
IK

of topological groups, where 5’% = ker(fl%), and U;ﬁ( : /[% — 7/.@7% is a
continuous section of ff% : W;zf% — /I% which is furthermore a topological
group homomorphism.

Proof. The assertion follows immediately from the proof of Theorem 2.16 and
from Proposition 2.17. O

Thus, Corollary 2.18 combined with [3, pages 240-241], implies that the
Weil-Arthur idele group 7//42{]% of K is isomorphic as a topological group to
the external topological semi-direct product .%; I%XI o2 4 1% of 7 [% by ., 1% relative

: P )
to the continuous section o of fi.

3. Automorphic Langlands group Lg of a number field K

There is a conjectural topological group Ly, called the automorphic Lang-
lands group of the number field K (the absolute Langlands group of K'), which
is closely related with the absolute Weil group Wy of K. Recall that, Wi is
a locally compact topological group which comes equipped with a continuous
homomorphism Bg : W — Gk, where G is the absolute Galois group of K
[13,26].

The expected properties of this conjectural topological group Lx attached
to the number field K are listed below.

3.1. Formal properties of the hypothetical group Lk (Part I)

Following Arthur [1], Fan [5], and Kottwitz [18], Lk is a certain hypothetical
locally compact group such that:

(1) There exists a surjective topological group homomorphism

LK B—) WK;
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(2) The kernel of the topological group homomorphism

L 2% Wi 25 Gy

is connected;
(3) The abelianization L3> of Ly is isomorphic to the abelianization W2P
of Wi via the isomorphism

fab
Ly = W,

(4) The kernel of the topological group homomorphism

Ly 2 L3 L8, yyap A, o loslel, g
is compact, where Cx denotes the idele class group of K, and as usual
Arty : WP =5 Ck is the global Artin reciprocity law of K

(5) For every valuation v of K, the absolute Langlands group Ly, of the
local field K,,, introduced in Subsection 2.5, which is the local analogue
of Lk, comes equipped with a surjective continuous homomorphism

TK,
L, EALN Wk,

which is defined by:
- fr, = Prw,, if v is a henselian valuation of K;
- fr, =idwy,, if v is an archimedean valuation of K;

(6) Every embedding e, : KP <« KP determines a continuous embed-
ding elanslands . 1, [ which is unique up to L g-conjugacy, and
extends the conjugacy classes of embeddings ey ®!l : Wy, — Wy and
eGalols . G — Gk again determined by e, : KP — K5P via the
commutativity of the following diagram

(3.1) Lie, 2w, 2 G

Langlands Weil Galois
e’U J{ e’l) l lev

Lx ———Wg %Gk

of continuous homomorphisms.

In this work, the properties listed above together with the one listed in Subsec-
tion 5.3 are called the formal properties of the locally compact group Lg. There
is an extra property called the universality of Ly, namely the global Langlands
reciprocity principle over K, whose discussion is postponed to a separate work.

Assumption 3.1. From now on we shall assume the existence of the hypothetical
automorphic Langlands group of a number field with the desired properties
listed above.
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4. Global non-abelian norm-residue symbol in Langlands form
For v € hig Uag, choose and fix an embedding
eyt K5P <3 K5
Recall from the 6'" basic property of the automorphic Langlands group Ly of

the number field K given in Subsection 3.1 that, this embedding determines a
continuous homomorphism

Langlands .

€, & : LKU — LK,
which is unique up to Lg-conjugation. Therefore, there exists a continuous
homomorphism
{.’KU};?glands ehanglands

Vi) % SU(2) N

~

yLanglands

NR{Z L

v

defined up to Lx-conjugation, for every v € hg, and a continuous homomor-

phism
NR%f(U)Langlands _ eganglands : WKU eganglands LK,

defined up to Lg-conjugation, for every v € ax. So, by Theorem 2.2 on the

universal mapping property of restricted free products, we have the following

theorem.

Theorem 4.1 (“Langlands form” of the global non-abelian norm-residue sym-
bol). There exists a continuous homomorphism
(pLanglands @
(4.1) NR% W — Ly,
which is unique up to local Ly -conjugacy introduced in Definition 2.5.

The continuous homomorphism

Langlands

NR7 W A — L,

which is unique up to local L g-conjugation, should be considered as the “ul-
timate form” of the global non-abelian norm-residue symbol of K, because of
the following theorem:

Theorem 4.2. The diagram

planglands

NR
(4.2) Wl —— Ly

f}il _ fo
NR£We11

I Wk

is commutative, where the continuous homomorphism

Weil

NRy @ 77— Wk,
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which is unique up to local Wi -conjugation, is the “Weil form” of the global
non-abelian norm-residue symbol of K introduced in [12] and studied in detail
in [13].

Proof. If v € hg, the following diagram

Pr

(PK,,)
(4.3) 2V ) % SU(2) — sy Vi)
{.,K'U}éi;:jglandsl J{{-,KU}ZV;L
Pr
Lk e Wk

v v

is commutative. Moreover, by Theorem 2.16

Weil Weil
ei

P NRZ
NRE o ffoq,: (W), & wat 15 g2 My

is given by
Weil Weil
® © ®
NRx o(fixogqw) =NRg o(gyoPr V(‘PK"))
2V Ky

(pWeil

=(NRy oq) OPerﬁ]K“)

= (eW°ll 5 {e, KU}ZV;LI) o Przvi:;(v)
v

Weil Weil
=e, o ({8, Kuloe oPr _ox))
v 2V

v

On the other hand, by the commutative diagram (3.1) and by the formal prop-
erty (5) of the topological group L,

,Langlands

Langlands % T ® NRT( fK
fr o NRy oqu: (WA y)y —> WA —— L — Wk
is given by
SOLanglands (pLanglands
fr o (NRy oqy) = fx o (NR% )

— fK o (d.;anglands ° {.’ KU}I;:?(I,IUglandS)
— (fK ° e%anglandS) o {.’ Kv}g(}:)glands
= (Vo fic,) o (o, K, Pianetands

_ (evWeil o PrWKU) o {.’ Kv}g?(nglands
= exve“ o (PrWKU o{e, Kv}gijlglands).

Therefore, the identity

Weil Langlands

NRy o fgogq, = fx oNRE o qy

follows from the commutativity of the diagram (4.3).
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If v € ak, again by Theorem 2.16,
Weil WWeil

] S NRE
NRE o ffoq,: (W), 2 wat 15 g2 My

is given by
preil ) SaWeil .
NRx o(fgoq)=NRg o(q oidw,, )
gpVVeil
= (NRf{ 0qy) o idWK,U
IS
and again by the commutative diagram (3.1),

Langlands
Langlands o

NR
frc o NRE oqu: (Wede)y Wt 5 L I8 W
is given by
SOLanglauds 4‘C]Langlands
fr o (NR% o0qy) = frx o (NR% )
— fK o eLanglands
v

=ey o fx, .

Now, the formal property (5) of Lg proves the identity

il Langlands
plang

NRE o f2oq, = NRE
K OfKOQv—fKO K O (qu-

So, for every v € hx Uag, the identity

Weil Langlands
<NR§ of;> = (fKo NR7; )

follows. Therefore, by Theorems 2.2, 2.3, and 2.4,

(pWeil " Langlands
NRy; o fr = fkoNRy ,

which proves that the diagram (4.2) is commutative. O

The following definition singles out an extremely important closed normal
subgroup of V/ﬂ%‘.

Langlands
Definition 4.3. The kernel ker(N R%K ) of the global non-abelian norm-
residue symbol
LpI;(anglands (pK
NRZ WA — Lk

Langlands
of K in Langlands form is denoted by e/VKfK ¢ and called the automorphic

kernel of W & %K .

Remark 4.4. Although the global non-abelian norm-residue symbol

Langlands

NR% W ol — L
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of K in Langlands form is defined up to local L-conjugation, by Theorem 2.6,

. ¢ Langlands © . .
the automorphic kernel 4" of W[ is well-defined in the sense

that it depends only on the local L x-conjugacy class.
Moreover, in [12], we proposed the following “meta-conjecture”:

Conjecture 4.5. The continuous homomorphism

Langlands

® %
NR% W Ay — Lk
is openS and surjective.

This completes the detailed discussion of the first part of our Seoul commu-
nication and Section 8 of [12]. We close this section with a remark:

Remark 4.6. Let G be a connected (quasisplit) reductive group over K. In the
remaining part of our Seoul communication, we introduced certain homomor-
phisms

bWy —LG(C),

whose equivalence classes are called the “W A-parameters” for G over K. We
plan to discuss the possible applications of “W A-parameters” for G over K
to the Langlands reciprocity and functoriality principles for G over K in a
separate work.

5. Basic properties of the global non-abelian norm-residue symbol
in Langlands form

In this section, we shall list the basic properties of the global non-abelian
norm-residue symbol

Langlands

NR% W ol — Li

of K in Langlands form which is defined up to Lx-conjugation. We shall skip
the proofs of these properties, because all of them follows from the proofs of the
Weil form counterparts of the basic properties presented in the Lahore paper
[13, Section 4] with very minor modifications.

Langlands  ~

630 that, the induced map W.Q{%/:/V;K — Lk is a topological group
isomorphism.
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5.1. Local-global compatibility of the non-abelian norm-residue sym-
bols in Langlands form

Langlands

The “local-global compatibility” of {o,KU}I;anlands and NR% states

the commutativity of the square
2V % SU(2) — W ol
{‘,Kv }ii;?flandSJ( J{NR; Langlands
LK"-’ e{.;anglands LK
Langlands

for v € hg. Note that both e{janglands : Lig, = Lg and NR% : 7/%% —

Ly are defined up to Lg-conjugation for v € hg. Look at [12, Theorem 4.1].

5.2. Relationship with the global abelian norm-residue symbol

The global non-abelian norm-residue symbol

Langlands

NR% Wl — L

of K in Langlands form defined up to Lg-conjugation sits in the following
commutative diagram

Langlands

NR
¥ K
Vs i SE—
ab Jab
L,Oab
(Remark 2.8) ag=sg WJZ{R L%?
U (Thm. 2.14) | 2P (Formal Prop. 3)

Global abelian CFT
NJ wab,
(o,K)

The proof is similar to the proof of Theorem 2 of [13].

5.3. Formal properties of the hypothetical group Lk (Part II)

We follow closely Tate [26] in this subsection.

The absolute Weil group Wi of the number field K has the following prop-
erty. Let E/K be a finite extension. The absolute Weil group Wg of E is the
open subgroup of Wi defined by

Wi = B¢ (Gr),

where the absolute Weil group Wi of the number field K comes equipped with
a continuous homomorphism Sx : Wi — Gx with dense image. Moreover,
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the open subgroup Wg of Wk is equipped with a continuous homomorphism
BE : Wg — G which sits in the commutative square

(5.1) Wi 2 Gy

'YE/K\L linc.

WKTGK

and with dense image, where the left vertical arrow
Ve/k  WE = Wik

is the natural embedding; that is, the identity map defined by the inclusion
mapping Wz := 5 (Gg) C Wk.

The local version of the property of Wi just stated now is as follows. Let
E/K be a finite extension. Let v € hx Uax and u € hg Uag such that u | v.
Then, E,, is a finite extension of K,. The absolute Weil group Wg, of E, is
the open subgroup of W defined by

Wi, = Bk (Gg,),

where the absolute Weil group Wi of the local field K, comes equipped with
a continuous homomorphism fg, : Wk, — Gk, with dense image. Likewise,
the open subgroup Wg, of Wi, is equipped with a continuous homomorphism
BE, : Wi, — Gg, with dense image and the square

BE,
(5.2) Wg, —— G,

TE, /Kul Jinc.

WKU e d GKU
B,

commutes, where the left vertical arrow
VE, /K., : WE, = Wk,

is the natural embedding; namely, the identity mapping defined by the inclusion
WEM = 61_(11) (GE“) C Wk,

The commutative diagrams (5.1) and (5.2) are related with each other as
well. In fact, any embedding e, : K°P — K defines conjugacy classes of
embeddings €S and eVl as well as e581° and elVell since e, : K5 <
KPP naturally and uniquely defines an embedding e, : E*P < EFP, and the



ON A GROUP RELATED WITH THE AUTOMORPHIC LANGLANDS GROUP 49

following diagram

BE

Wg GE

By
WE“ GE“ inc.
“/E/KJ
Bk

VB, /Ky WK Hres GK

B,

WKU — G K,

is commutative.
So, it is natural to expect that the hypothetical locally compact group Ly
has the following property:

(7) If E/K is a finite extension, then Lg is an open subgroup of Lx defined

by
Lg = f}_(l(’VE/K(WE))v

where the absolute Langlands group Lg of the number field K comes
equipped with a surjective topological group homomorphism fr : Lx —
Wik . Moreover, the open subgroup Lg of Lg is equipped with a sur-
jective topological group homomorphism fgz : Ly — Wg which sits in
the commutative diagram

(5.3) Ly 2w 2 ap

wE/Ki “/E/Kl linc.

Ly —— Wk HGK
fx Br

where the left vertical arrow
WE/K LE — LK

is the natural embedding; that is, the identity map defined by the

inclusion L := f;}l(W’E/K(WE)) C Lg.
The expected property of the hypothetical locally compact group Lk just stated
above is listed as the formal property (7) of L. There is also the local analogue
of the formal property (7) of Lk, which is no longer an expectation, but a fact.
Let again E/K be a finite extension. Let v € hx Uag and p € hg Uag such
that p | v. Then, E, is a finite extension of K,,. The formal property (8) of
L states that:

(8) L, is the open subgroup of L, satisfying

Lg, = 5 (ve,/k,(WE,)),
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where the absolute Langlands group Lg, of the local field K, comes
equipped with a surjective continuous homomorphism fx, : Lx, —
Wk, . Likewise, the open subgroup Lg, of Lk, is equipped with a
surjective continuous homomorphism fg, : Lg, — Wg,, and the rec-

tangle
B, BE,,
(5.4) Lg, ——Wg, ——Gg,
wEM/KUJ/ A/E;L/KUJ( Jinc.
L w G
Ko = Wk, 5 = bk,

is commutative, where the left vertical arrow
WE, /K, * LEM — LK’U

is the natural embedding; that is, the identity map defined by the

inclusion Lg, := f}?i(’YEH/KU (Wg,)) C Lk,
The commutative diagrams (5.3) and (5.4) are related with each other as fol-
lows: any embedding e, : K°P — K;°P defines conjugacy classes of embed-
diDgS eﬁ(;;‘ralcns7 exvcn and eLanglands as well as e§a101s’ e?}Ncﬂ and e%anglands’ since
ey @ K5 — K35°P naturally and uniquely defines an embedding e, : E5P —
E7P, and the following diagram

e BE
Lg Wg GEg
eﬁ“"ghﬂy‘ eV 657
I, By,
Lg, W, G, ine
wE/KJ ’YE/KJ
fK Bk
WE, /Ky LK = WK re- GK
fKy Bk,
Lk Wk Gg

v v

is commutative.
5.4. Weil-Arthur ideéles in field extensions

Let E be a finite extension of the number field K. In this subsection, we
shall discuss the relationship between the Weil-Arthur idele group # o %}K of
K and the Weil-Arthur idele group # &7 %E of E.

Remark 5.1. Let E be a finite extension of the number field K. Fixing ¢, =
{¢K, tven, uniquely determines ¢, = {¢E, }uen, via Koch-de Shalit process
applied to compatible extensions of K, for each v € hg. For details, look at
[15, Section 7] and [17, p. 89].
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Now, for any v € hg and for any p € hg satisfying p | v, define a continuous
homomorphism
oo . L oler,) (PKy)
'/VEu/KU X 1dSU(2) : szM X SU(Z) — ZVKU X SU(Q)

via the commutative diagram

Weil

(e P
2V W,

‘/VEOZ/KvJ( J’YE“/KU
V(S@KU) ~ w
z Ky (eK ) Weil K,
@ v
Ky

introduced in [15, p. 39]. Then, clearly the following square

{'7Eu }gaEnglands

emy)
(5.5) Vi) % SU@) ——— " L,
N [ Ky Xidswz)l JWEM/KU Xidsy(2)=wr,, /Ky

ZVE%) % SU(2) ~
L]

(K )Langlzmds K”
v

Ky
is commutative.
Thus, for every u € hg, there exists a continuous homomorphism
2V X SU(2) = W sl g
defined by the composition

'/VEOi /K, Xidsu(2)
—>

Qo 0 N2 e, X idsua) 1 2V ™) % SU(2) 2V X SU©2) L S,

and for every p € ag, a continuous homomorphism
WE;L — WA %K
defined by the composition

v ©
Qv © ’YEH/KU : WE# — WKU q—> W%}K.
VB /Ky
So, by Theorem 2.2, there exists a unique continuous homomorphism
Sk W AT WA,
called the norm homomorphism from the Weil-Arthur idele group # < }%E of

E to the Weil-Arthur idele group # & %( of K.
Modifying the proof of Proposition 3 of [13], we see that the norm homo-
morphism is transitive; namely

</VFO/OK = </VEO7K oM FO/OE
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for any tower of finite extensions K C E C F of the number field K.

The relationship between the Weil-Arthur idele group # .« %‘ of K and the
Weil-Arthur idele group 7/427’%5 of E is encoded in the following commutative
square

Langlands
¢, NRg
Vs R E— .
Ny Kl J{w}; /K
W o oK Lx
K ,Langlands ’
NR K

where the commutativity of the diagram follows by an argument similar to the
one given in the proof of Theorem 3 of [13].

5.5. Relative global non-abelian norm-residue symbols in Langlands
form

For each finite extension E/K, observe that, there exists a well-defined topo-
logical bijection
fe/k  Lx/Le = Wk /ve/xk(WE)
defined by
fe/k i2le = fr(®)ve/k(WE)
for every € Lg. Therefore, there exist the following topological bijections of
homogenous spaces:

fE K ﬁE K
Li/Lg =25 Wk /ve/xk(WE) 5 G /G

In particular, if E//K is furthermore Galois, the topological bijection fp/k :
Ly /Lg—Wk/vg/k(WEg) is furthermore an isomorphism of topological groups.
Therefore, for any finite Galois extension E/K, there exists a continuous

homomorphism
SDLanglands

NRGS, W o/ — Gal(E/K)
defined up to Gal(E/K)-conjugation, called the global non-abelian norm-residue
symbol in Langlands form relative to the extension E/K, which is defined as

the top horizontal arrow that makes the diagram

NR£I_/14(;Lnglands

© E/K

Wl » Gal(E/K)
vLanglands 2 %

NR}K resy

Lg ——»Lg/Lp —— Wik /vp/x(We) ——— Gk /GE
modr, 5 fE/K BE/K
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Langlands
commutative. Recall that the arrow NR%K

to Lx-conjugation.
Observe that, if Conjecture 4.5 holds, then obviously, the continuous homo-
morphism

: 7/;27’%‘ — Ly is defined up

Langlands

(5.6) NRGS, W/ — Gal(E/K)

is surjective. Moreover, an argument similar to the proof of Theorem 4 of [13]
shows that this arrow has open kernel

Langlands Langlands
ker(NRES, ) = Nl OW o/ g2 )M

inducing a topological group isomorphism
Langlands™®

v
NRE

@ Langlands ~,

W AN WA GE) N = Gal(E/K).

5.6. Relationship with the relative global abelian norm-residue sym-
bol

Let E/K be a finite Galois extension. Let (E/K)*" denote the maximal
abelian extension of K inside E.
The global non-abelian norm-residue symbol in Langlands form
Langlands

NRpS, ¥/ — Gal(E/K)

relative to the extension E/K, which is defined up to Gal(E/K)-conjugation,
sits in the following commutative diagram

pLenglands
Wt K B Gal(E/K)
ab Jab
ab
(Remark 2.8) ag=skg W&Z{%K Gal(E/K)ab

(Thm. 2.14) zJ

Global abelian CFT ab
3 S e S Gal(B/K)™/ K).

The proof of the commutativity of the above diagram is similar to the proof of
Theorem 5 of [13].

5.7. Decomposition and inertia groups

Maintain the assumptions and the notation introduced in Subsection 5.5.
Let E/K be a finite Galois extension. For v € hgUag, let D,, := D,,(E/K) and
I, := I,(E/K) denote respectively the decomposition and the inertia groups
of v in Gal(E/K) determined by the continuous homomorphism elanelands



54 K. I. IKEDA

Lk, — Li defined up to Lx-conjugation. That is, the subgroups D,, and I,
of Gal(E/K) are defined up to Gal(E/K)-conjugation by

D, =resp o fg/k © fr/k omody,, o eganglands(LKu)

and
I, =resy o Bp/k © fp/x omodr, o e{janglands(L%v),
where for v € hg, the group L(}(U is defined by WIOQ x SU(2) and for v € ag,
the group W?(U is defined by WIO(U =Wk, .
For every prime v € hig Uag,
— The image of the continuous homomorphism defined by the composi-

tion
. ZViER) x8U@2), wehg ) | o NREETE
(Wd}l() = WR, U € agRr = WW}K _— Gal(E/K)
’ We, v E€agc

is the decomposition group D,, of v in Gal(E/K), which is unique up to
Gal(E/K)-conjugation, determined by the continuous homomorphism
e%anglands : Lk, — Lk, defined up to L g-conjugation;

— The image of the continuous homomorphism defined by the composi-

tion
0 anglands
£\ 1V§ff“) x SU(2), v e€hg “™ o, NREI;K e
(o) = we, veagn | o Walg 1 Gal(E/K)
Wg, V€ ag,.c
is the inertia group I, of v in Gal(E/K), unique up to Gal(E/K)-

conjugation, determined by the continuous homomorphism elaneglands .
Lk, — Lg, defined up to Lx-conjugation.

The proof is a straightforward modification of Theorem 6 of [13].
5.8. Basic functorial properties

Let K C E C F be a tower of finite Galois extensions of the number field
K. Then,
— The triangle

Langlands
PK

F/K

W ol o Gal(F/K)

resg

Langlands
phanglands

Gal(E/K)

where the right vertical arrow is the restriction map to E, is commu-
tative;
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— The square

Langlands
LR
F/E

W A P Gal(F/E)

oo .
N K inc.

W ol o ————— Gal(F/K)
YK

NR;/K

is commutative.

The proofs of the commutativity of the above two diagrams are similar to the
proofs of Theorems 7 and 8 of [13].

5.9. Global non-abelian existence theorem in “Langlands form”

In this subsection, we assume that Conjecture 4.5 holds.

The non-abelian generalization of the existence theorem of global abelian
class field theory, in “Langlands form”, states the existence of an inclusion-
reversing bijective correspondence

Finite Galois exten— | _, Open normal subgroups of finite index
sions of K inside K®*¢P in % g/%K containing JVI(fK Langlands ¢,

which is defined by
@ Langlands

oo @
E— E/K(W%EE),/VK
¢ Langlands

for every finite Galois extension E of K inside K*°’, where A% =

(o Langlands_ | . Pore . X
ker(NR% ) is the automorphic kernel of # &77* introduced in Defini-

tion 4.3. Note that, the proof is similar to the one presented in Subsection 4.8
of [13].

5.10. Non-abelian ray class groups and non-abelian ray class fields

Let S = ak,c and m be an S-cycle (=S-modulus) of the number field K.
Note that, an S-cycle m = HvehKUaK v® of K canonically defines a subgroup

%EK of Wﬂ%‘ by the free product

Pk (¢Ky)
%m = *U%m,u )

where the local groups %ngﬁ,K”) for v € hg Uag are defined as follows:

(o}
~v€Ehgande, =0: %ngﬁf(’”) = 1V¥UK“) x SU(2);
~vechgande, >0: %nﬁﬁ,’(v) = 1V¥UK'”)LU x SU(2);
- veagrand e, =0: %H%K“) = Wg;
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—veEagrand e, =1: 02/,,(1“701,1{“) = WR,>0, where Wg ¢ is the subgroup
of Wgr which is defined as the pre-image of the subgroup Rs of R*
under the natural abelianization homomorphism Wg — Wgb = R* of
Wr;

— v Eagc: Soe, =0 and we set ﬁi/ngﬁf(”) =We.

For the definition and the basic properties of the subgroup 1 V(Iff“ " of ZV%UK” ),
where ¢ is an “increasing net” in R>_1, look at [16].

Now, assume that Conjecture 4.5 holds in this subsection.
For any S-cycle m = [] ve of K, let 7/m£" denote the smallest open

. UG'hKUaK. P .. ¢ Langlands ¢
normal subgroup of finite index in # .&/%/ containing A% Uy¥. By
Subsection 5.9 on the global non-abelian existence theorem in Langlands form,
there exists a finite Galois extension R, of K inside K®¢P  called the S-ray
class field of m, satisfying

Langlands™

NRZX

o WAV E s Gal(R /K.

The group V/M%(/”f/mfk is called the S-ray class group of m. Moreover,
— The Galois extension R, over K is unramified at all v with e, = 0.

Now, let E/K be any finite Galois extension. By the global non-abelian exis-
tence theorem in Langlands form stated in Subsection 5.9,

@ Langlands

o Py
N k(W A E)

: . . [ L. ¢ _Langlands
is the open normal subgroup of finite index in # &/} containing A7 *
and corresponding to E. Therefore, the subgroup

¢ _Langlands
SK

N N W S E))

of Jx is open and finite index in Jg. So, there exists a cycle m of the number
field K such that

@ Langlands

K" Un © K*sic (i€ SV A E))

Langlands
Now, the subgroup sl_(l(KX)JVI(fK ¢ JVEO/OK(V/%%E) of Wﬁf%{ is open

and of finite index in Wﬂ%w , and corresponds to a subfield F) of E (abelian
over K) under the global non-abelian existence theorem in Langlands form.
Moreover:

— Let E/K be any finite Galois extension. Then F) is a subfield of Ry,
for some cycle m of K.

The proofs of the above two statements are similar to the proofs of Theorems
11 and 12 of [13].
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5.11. The set of primes in K that split in a finite extension E/K

Let E be a finite Galois extension of the number field K. As usual, denote
the set of finite primes v in K that split completely in E by Spl(E/K).

We again assume that Conjecture 4.5 holds in this subsection. Then, from
the facts stated in Subsection 5.7 combined with the basic properties of the
arrow (5.6) stated in Subsection 5.5, the following result follows:

— A prime v in K splits completely in F/K if and only if qv(ngfUK”) X

Langlands Langlands
SU(2)) C ker(NRgf, ) =M S (W A gF),

Thus, the set Spl(E/K) is characterized in terms of the base field K by

Langlands
Spl(E/K) = {v € hi | qu(zVE™) x SU(2)) ker(NR%fK ) )}~

This completes the discussion of the basic properties of the global non-abelian
norm-residue symbol in Langlands form following closely [13].

References

[1] J. Arthur, A note on the automorphic Langlands group, Canad. Math. Bull. 45 (2002),

no. 4, 466-482. https://doi.org/10.4153/CMB-2002-049-1
[2] I. Barnea and S. Shelah, The abelianization of inverse limits of groups, Israel J. Math.
227 (2018), no. 1, 455-483. https://doi.org/10.1007/s11856-018-1741-x

[3] N. Bourbaki, General topology. Chapters 1—4, translated from the French, reprint of the
1966 edition, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. https:
//doi.org/10.1007/978-3-642-61701-0

[4] V. Drinfeld, On the pro-semisimple completion of the fundamental group of a smooth
variety over a finite field, Adv. Math. 327 (2018), 708-788. https://doi.org/10.1016/
j.aim.2017.06.029

(5] E.S. T.Fan, A note on the cohomology of the Langlands group, Trans. Amer. Math. Soc.

367 (2015), no. 4, 2905-2920. https://doi.org/10.1090/S0002-9947-2014-06230-2
(6] I. Fesenko, Nonabelian local reciprocity maps, in Class field theory—its centenary and
prospect (Tokyo, 1998), 63-78, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo,
2001. https://doi.org/10.2969/aspm/03010063
(7] J.-M. Fontaine and J.-P. Wintenberger, Le “corps des normes” de certaines extensions
algébriques de corps locauz, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 6, A367—
A370.

8] , Extensions algébrique et corps des normes des extensions APF des corps locauz,
C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A441-A444.

[9] S. P. Franklin and B. V. S. Thomas, A survey of k.,-spaces, Topology Proc. 2 (1977),
no. 1, 111-124 (1978).

[10] H. Glockner, R. Gramlich, and T. Hartnick, Final group topologies, Kac-Moody groups
and Pontryagin duality, Israel J. Math. 177 (2010), 49-101. https://doi.org/10.1007/
s11856-010-0038-5

[11] M. I. Graev, On free products of topological groups, Izvestiya Akad. Nauk SSSR. Ser.
Mat. 14 (1950), 343-354.

[12] K. ikeda, On the non-abelian global class field theory, Ann. Math. Qué. 37 (2013), no. 2,
129-172. https://doi.org/10.1007/s40316-013-0004-9

, Basic properties of the non-Abelian global reciprocity map, in Mathematics in

the 21st century, 45-92, Springer Proc. Math. Stat., 98, Springer, Basel, 2015. https:

//doi.org/10.1007/978-3-0348-0859-0_5

(13]



https://doi.org/10.4153/CMB-2002-049-1
https://doi.org/10.1007/s11856-018-1741-x
https://doi.org/10.1007/978-3-642-61701-0
https://doi.org/10.1007/978-3-642-61701-0
https://doi.org/10.1016/j.aim.2017.06.029
https://doi.org/10.1016/j.aim.2017.06.029
https://doi.org/10.1090/S0002-9947-2014-06230-2
https://doi.org/10.2969/aspm/03010063
https://doi.org/10.1007/s11856-010-0038-5
https://doi.org/10.1007/s11856-010-0038-5
https://doi.org/10.1007/s40316-013-0004-9
https://doi.org/10.1007/978-3-0348-0859-0_5
https://doi.org/10.1007/978-3-0348-0859-0_5

(14]

(15]
[16]
(17]
(18]

(19]

20]

21]

[22]

K. I. IKEDA

K. ikeda and E. Serbest, Generalized Fesenko reciprocity map, St. Petersburg Math. J.
20 (2009), no. 4, 593-624; translated from Algebra i Analiz 20 (2008), no. 4, 118-159.
https://doi.org/10.1090/51061-0022-09-01063-2

, Non-abelian local reciprocity law, Manuscripta Math. 132 (2010), no. 1-2, 19—
49. https://doi.org/10.1007/s00229-010-0336-6

, Ramification theory in non-abelian local class field theory, Acta Arith. 144
(2010), no. 4, 373-393. https://doi.org/10.4064/aal44-4-4

H. Koch and E. de Shalit, Metabelian local class field theory, J. Reine Angew. Math.
478 (1996), 85-106. https://doi.org/10.1516/crll.1996.478.85

R. E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984),
no. 3, 611-650. https://doi.org/10.1215/50012-7094-84-05129-9

R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein
Marchen, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure
Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, 205-246, Proc. Sympos. Pure
Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979. https://doi.org/10.1090/
pspum/033.2

, Functoriality and Reciprocity, Two Lectures at the Institute for Advanced Stud-
ies, Seminar Notes, March 2011. http://publications.ias.edu/sites/default/files/ functo-
riality. pdf

F. Laubie, Une théorie du corps de classes local non abélien, Compos. Math. 143 (2007),
no. 2, 339-362. https://doi.org/10.1112/50010437X06002600

K. Miyake, Galois-theoretic local-global relations in nilpotent extensions of algebraic
number fields, in Séminaire de Théorie des Nombres, Paris, 1989-90, 191-207, Progr.
Math., 102, Birkhauser Boston, Boston, MA, 1992. https://doi.org/10.1007/978-1-
4757-4269-5_14

[23] S. A. Morris, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971),

17-29. https://doi.org/10.1017/5S0004972700046219

[24] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, second edition,

Grundlehren der Mathematischen Wissenschaften, 323, Springer-Verlag, Berlin, 2008.
https://doi.org/10.1007/978-3-540-37889-1

[25] E. T. Ordman, Free products of topological groups which are k., -spaces, Trans. Amer.

Math. Soc. 191 (1974), 61-73. https://doi.org/10.2307/1996981

[26] J. Tate, Number theoretic background, in Automorphic forms, representations and L-

functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part
2, 3-26, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979.
https://doi.org/10.1090/pspum/033.2

KAz ILHAN IKEDA

DEPARTMENT OF MATHEMATICS
YEDITEPE UNIVERSITY

26 AGUSTOS YERLESIMI

INONU MAH., KAYISDAGI CAD.
34755, ATASEHIR, ISTANBUL, TURKEY


https://doi.org/10.1090/S1061-0022-09-01063-2
https://doi.org/10.1007/s00229-010-0336-6
https://doi.org/10.4064/aa144-4-4
https://doi.org/10.1515/crll.1996.478.85
https://doi.org/10.1215/S0012-7094-84-05129-9
https://doi.org/10.1090/pspum/033.2
https://doi.org/10.1090/pspum/033.2
https://doi.org/10.1112/S0010437X06002600
https://doi.org/10.1007/978-1-4757-4269-5_14
https://doi.org/10.1007/978-1-4757-4269-5_14
https://doi.org/10.1017/S0004972700046219
https://doi.org/10.1007/978-3-540-37889-1
https://doi.org/10.2307/1996981
https://doi.org/10.1090/pspum/033.2

ON A GROUP RELATED WITH THE AUTOMORPHIC LANGLANDS GROUP 59

Current address:

Department of Mathematics

Bogazigi University

34342, Bebek, Istanbul, Turkey

and

Feza Giirsey Center for Physics and Mathematics
Bogazigi University-Kandilli Campus

Rasathane Cad., Kandilli Mah.

34684, Istanbul, Turkey

Email address: kazimilhan.ikeda®@boun.edu.tr



