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Abstract. The aim of this work is to introduce for the first time the
concept of D-set. This is done by defining a special type of cover called
a D-cover. we present some results to study the properties of D-compact
spaces and their relations with other topological spaces. Several examples
are discussed to illustrate and support our main results. Our results extend
and generalized many will known results in the literature.

AMS Mathematics Subject Classification : 54E55, 54B10, 54D10, 54D30.
Key words and phrases : Topological space, D-set , D-cover, compact
space, D-compact space, D-lindlöf space, D-countably compact space, lo-
cally indiscrete space, D-continuous function, D- irresolute function.

1. Introduction

In general topology, open sets play very important roles in defining a new type
of sets and some important topological characteristics about these new concepts.

In 1982, Tong [17] introduced the notion of difference set ( in shortly D−sets)
by using open sets and used this notion to define and ivestigate a new separa-
tion axioms called Di (i = 0, 1, 2) spaces. Later, in 1997, Caldas [3] used semi
open sets to define the concepts of s − Di (i = 0, 1, 2). The implications of
these new separation axioms among themselves and with the well known axioms
Di (i = 0, 1, 2) are obtained. In 2001, Jafari, [8] used p−open sets to give the def-
initions of p−D−sets and use it to introduce the concepts of p−Di (i = 0, 1, 2)
spaces. The relation between these separation axioms are obtained. While in
2003, the topologists Caldas et. al. [4] defined α − Di (i = 0, 1, 2) spaces by
using the notion of α−open sets. In 2008, Ekici and Jafari [5] introduced the
notions of D−sets, DS−sets, D−continuity and DS−continuity to obtain de-
compositions of continuous functions, A−continuous and AB−continuous func-
tions. Also, properties of the classes of D−sets and DS−sets are discussed.
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Later, in 2009, Keskin and Noiri [10] introduced the concepts of bD−sets as a
difference of two b−open sets and used it to obtain some weak separation ax-
ioms. They also, introduced the implications of these new separation axioms
among themselves and with the well known axioms that we, mentioned earlier.
In 2010, Balasubramanian [1] generalized the previously known postulates sep-
aration through the definition g − Di (i = 0, 1, 2) spaces . In 2011, Ilango et.
al. [2] used gpr−sets to define gpr − Di (i = 0, 1, 2) spaces. In 2012, Sreeja
and Janaki [16] introduced and investigated some weak separation axioms by
using the notions of πgb−closed sets. They introduced a new generalized ax-
iom called πgb−separation axioms and they incorporated πgb − Di spaces to
characterize their fundamental properties. Gnanachandra and Thangavelu [7]
used pgpr−open sets to introduce the notion of pgpr−D−sets as the difference
of two pgpr−open sets and investigated their basic properties. They defined
some weak separation axioms and studied some of their basic properties namely
pgpr − Di (i = 0, 1, 2) spaces. The implications of these axioms among them-
selves and with the known axioms namely Di , p−Di , s−Di , α−Di , g−Di and
gpr −Di (i = 0, 1, 2) are discussed. Mustafa and Qoqazeh [12] introduced and
investigated some weak separation axioms by using the notion of supra open sets.
They studied the relationships between these new separation axioms and their
relationships with some other properties. In 2017, Padma et. al. [14] introduced
and investigated Q∗D−sets by using the notion of Q∗−open sets to obtain some
new weak separation axiom namely Q∗Di (i = 0, 1, 2) spaces. The relationships
between existing D−sets namely D , p−D , s−D , α−D , g−D and gpr−sets
and a new type of D−sets in topological spaces are explained. In 2018, Qoqazeh
et. al. [15] introduced the concepts of pairwise D-metacompact spaces and stud-
ied their properties and their relations with other topological spaces. Vithya [18]
introduced the notions and concepts of b♯D−sets as a difference of two b♯−open
sets. Some weak separation axioms namely b♯−Di (i = 0, 1, 2), b♯−R0, b♯−R1

are introduced and studied. Some lower separation axioms are characterized by
using these separation axioms. In 2019, Sabiha and Abdul-Hady [11] introduced
and characterized new types of soft sets in soft bitopological spaces, namely, soft
(1 , 2)

∗ −omega difference sets ( briefly soft (1 , 2)∗−D̃ω-sets ) and weak forms
of soft (1 , 2)∗ −omega difference sets. Also, they used these soft sets to study
a new types of soft separation axioms, namely, soft (1 , 2)

∗ − ω − D̃j−spaces,
soft (1 , 2)

∗ − α − ω − D̃j−spaces, soft (1 , 2)
∗ − pre − ω − D̃j−spaces, soft

(1 , 2)
∗ − b− ω − D̃j−spaces, soft (1 , 2)∗ − β − ω − D̃j−spaces, for j = 0, 1, 2

. Jardo [9] introduced the notions and concepts of iD−sets which are depend
on i−open sets. He discussed the relationship between this sets and other types
of sets. Many separation axioms are characterized by using this type of sets
namely, iD − (i = 0 , 1 , 2)−spaces.

In this work,first we introduce the notions of D−compact spaces by defining
a special type of covers called a D−cover. Many new theories and illustrative
examples is discussed.
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Second, the main relationship between D−compact spaces and the compact
spaces and many other topological spaces namely, D−lindlöf,D−countably com-
pact spaces is presented.

Finally, some of the characteristics of the Cartesian product process between
D−compact spaces and other spaces will be studied under extra conditions.

2. Preliminaries

Through out the paper, by (X, τ) and (Y, σ) or ( X and Y ) we always mean
topological spaces on which no separation axioms are assumed, unless otherwise
mentioned. The letters τ−closure, τ−interior of a set A will be denoted by
CL (A), Int (A), respectively. The product of τ1 and τ2 will be denoted by
τ1 × τ2. Let R, Z, N, Q denote the set of all real numbers, integer numbers,
natural numbers, and rational numbers, respectively. Let τdis, τind, τu, τs,
τcoc, τcof , τl, τr denote to the discrete, the indiscrete usual, Sorgenfrey line,
cocountable, cofinite, left-ray, and right-ray topologies, respectively. Also, ω0

and ω1 stand to the cardinal numbers of Z and R, respectively.

3. D-Compact Spaces

In this section, we will introduce the concept of D-compactness in topological
spaces, and provide some of their properties, and relate it to other spaces.

The following definitions will be used in the sequel.

Definition 3.1 (Tong [17]). A subset A of a topological space (X, τ) is called
a D−set if there are two open sets U and V such that U ̸= X and A = U − V .
In this case we say that A is a D−set generated by U and V .

Observe that every open set U different from X is a D−set if A = U and
V = ϕ.

Remark 3.1. If X is the only open set in (X, τ), then τ is the indiscrete
topology. In this case X called weakly D−set.

Remark 3.2. The converse of above definition need not be true as we see in
the following example.

Example 3.2. (i) Let X = {a, b, c} and τ = {ϕ,X, {a} , {a, b}}. Then D =
{a, b} − {a} = {b} is a D−set but not an open set.

(ii) In the topological space (R, τcof ) , {{x} : x ∈ R} is a collection of D−sets
but not an open sets.

Definition 3.3. A cover D̃ = {Dα : α ∈ ∆}of a topological space (X, τ) is said
to be D−cover if each Dα is a D−set for all α ∈ ∆.

It is clear that every open cover is a D−cover, but the converse needs not be
true. In the topological space (R, τcof ), {{x} : x ∈ R} is a D−cover that is not
open cover.
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Definition 3.4. A topological space (X, τ) is calledD−compact if everyD−cover
of the space (X, τ) has a finite subcover.

Example 3.5. (i) Let X = R and τ = {ϕ,Rn, {1} ,R− {1}}. Then (R, τ) a
D−compact space.
(ii) Let X = nR and τ = (R, τu). Then (R, τ) is not a D−compact space.
Since ∀ n ∈ N Given Un = (−n , n) then the open cover Ũ = {Un : n ∈ N} is
also a D−cover which has no finite subcover.

Theorem 3.6. If X is a finite set , then (X, τ) is a D−compact space for any
topology τ on X.

Proof. Let X = {x1 , x2 , ... , xn} be a finite set. Let D̃ = {Dα : α ∈ ∆} be
a D−cover of X. Now ∀ xi ∈ X, choose Di ∈ D̃ such that xi ∈ Di. So D∗ =
{D1 , D2 , ... , Dn}is a finite subcover of D̃ for X. So X is a D−compact. �

Remark 3.3. The intersection of any two D−sets is a D−set.

Proof. Let D1 = U1−V1 and D2 = U2−V2 be any two D−sets , then D1∩D2 =
(U1 ∩ U2)− (V1 ∪ V2) is a D−set. �

The following corollary is easy to prove using the method of mathematical
induction:

Corollary 3.7. In any topological space (X, τ) the finite intersection of D−sets
is a D−set.

Remark 3.4. In general the union of any collection of D−sets may not be a
D−set.

Example 3.8. (i) Let X = {a, b} and τ = {ϕ,X, {a} , {b}}. Then D1 = {a}−ϕ
and D1 = {b} − ϕ are two D−sets. But D1 ∪D2 = {a , b} = X is not a D−set.
Since X ̸= U − V where U and V are two open sets and X ̸= U .
(ii) Let X = {a, b, c} and τ = {ϕ,X, {a} , {c} , {a, c} , {b , c}}. Then D1 =
{a} = {a, c} − {b , c} and D2 = {b} = {b , c} − {c} are two D−sets. But
D1∪D2 = {a , b}is not a D−set. Since {a , b} ̸= U −V where U and V are two
open sets and X ̸= U .

Let us recall known definition and some important conclusions from it which
will be used in the sequel :

Definition 3.9 (Sreeja and Jananki [12]). A space (X, τ) is said to be locally
indiscrete if every open set is clopen.

It is clear that any discrete space (X, τ) is locally indiscrete. But the converse
needs not be true as we will see in the following example.

Example 3.10. Let X = {1 , 2 , 3} and τ = {X , ϕ , {1} , {2, 3}}. Then
(X, τ) is locally indiscrete space but not discrete. Because {x} /∈ τ when x ∈
{2, 3}.
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Corollary 3.11. In a locally indiscrete space every D−set is clopen.

Proof. Let D = U−V , Where U and V be two open sets. Then they are clopen
sets, so D is clopen since it is the difference of two clopen sets. �

Corollary 3.12. In a locally indiscrete space the union of any collection of
D−sets is a D−sets.

Theorem 3.13. Every D−compact space is compact.

Proof. Let Ũ = {Uα : α ∈ ∆} be an open cover of (X, τ). Then Ũ is a D−cover,
so it has a finite subcover. Hence the result. �

The following example shows that the converse of the above theorem is not
true in general.

Example 3.14. The topological space (R, τcof ) is compact but not aD−compact
. We know that any set of the form R − {x} , x ∈ R is an open set in a
topological space (R, τcof ). Now let U = R − {y} and V = R − {x}. Then
D = U − V = {x} is a D−set which is not open. So D̃ = {{x} : x ∈ R} is a
D−cover of (R, τcof ) which has no finite subcover. If D̃ = {{x} : x ∈ R} has a
finite subcover {{x1} , {x2} , ... , {xn}}, we have R ⊆

n∪
i=1

{xi}, that means R

is a finite set. Which is a contradiction.

The following example shows that the contrapositiv of the above theorem is
true.

Example 3.15. The topological space (R, τl.r) is not compact , so it is not a
D−compact .

The following theorem shows that the converse of the above theorem can be
true under extra conditions.

Theorem 3.16. Every locally indiscrete compact topological space (X, τ) is
D−compact.

Proof. Let D̃ be a D−cover of (X, τ). Then D̃ = {Dα : α ∈ ∆}, where Dα is
a clopen set for each α ∈ ∆. So D̃ is an open cover of (X, τ). Since (X, τ) is
compact , D̃ has a finite subcover. Hence the result. �

Example 3.17. (i) It is clear that the locally indiscrete topological space (R, τind)
is D−compact, since it is compact.
(ii) Let X = R and τ = {∅,R,R− {2} , {2}}. Then (X, τ) is locally indiscrete
compact topological space.Hence it is D−compact.

Theorem 3.18. Let (X, τ) be a topological space and A ⊆ X , if Dα is a D−set
in X , then Dα ∩A is a D−set in (A, τA) , where τA is the induced topology on
A.
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Proof. Let Dα is a D−set in X , then Dα = U − V . where U and V are two
open sets in X and U ̸= X . Now Dα∩A = (U − V )∩A = (U ∩A)−(V ∩A) =
Uα − Vα is a D−set in (A, τA). Since Uα ∈ τA and Vα ∈ τA. �

Theorem 3.19. Let (X, τ) be a topological space and A ⊆ X , then (A, τA) is
D−compact if and only if every cover of A by D−sets in X has a finite subcover.

Proof. =⇒) Let (A, τA) be a D−compact space and D̃ = {Dα : α ∈ ∆} be a
D−cover of A by D−sets in X . Now ∀ α ∈ ∆ , let D∗

α = Dα ∩ A. Then D∗
α

is a D−sets in A. So D̃∗ = {D∗
α : α ∈ ∆} is a D−cover of A by D−sets in A.

Since (A, τA) is D−compact, D̃∗ has a finite subcover {D∗
α1 , D

∗
α2 , ... , D

∗
αn }

for A. Hence the family {Dα1 , Dα2 , ... , Dαn } is a finite subcover of D̃ in X
for A ,where D∗

αi = Dαi ∩A.Hence the result.
⇐=) Assume that any D−cover of A by D−sets in X has a finite subcover.

Let Ã = {Aα : α ∈ ∆} be a D−cover of A by D−sets in A. So ∀ α ∈ ∆

, ∃ a D−sets Dα in X such that Aα = Dα ∩ A. Now D̃ = {Dα : α ∈ ∆}
be a D−cover of A by D−sets in X. By assumption D̃ has a finite subcover
{Dα1 , Dα2 , ... , Dαn }. Hence {Aα1 , Aα2 , ... , Aαn } is a finite subcover of
Ã for A because Aαi ⊆ Dαi , ∀ α ∈ ∆ , i = 1 , 2 , ... , n. Hence the result. �

Since every open cover is a D−cover let use the following corollary:

Corollary 3.20. If (A, τA) is a D−compact space then every open cover of A
by open sets in X has a finite subcover.

Corollary 3.21. If every D−cover of A by D−sets in X has a finite subcover
, then (A, τA) is compact .

Proof. Since every D−compact space is compact , this corollary is a direct result
of the second trend from the previous theory. �

Theorem 3.22. Let (X, τ) be a topological space and β be a base for X. If
(X, τ) is D−compact , then every D−cover generated by elements in β has a
finite subcover.

Proof. Assume that is aD−compact space and D̃ = {Dα : α ∈ ∆} be aD−cover
of X by D−sets generated by elements in β . So D̃ is also a D−cover of X
generated by elements in τ ,so it has a finite subcover. Hence the result. �

Corollary 3.23. Let (X, τ) be a topological space and β be a base for X. If
(X, τ) is D−compact , then every open cover generated by elements in β has a
finite subcover.

Proof. In the same way as in the previous theory , this corollary is easy to
prove. �

Theorem 3.24. Let (X, τ1) , (X, τ2) be two topological spaces. If (X, τ2) is a
D−compact and τ1 ⊆ τ2 , then (X, τ1) is a D−compact.
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Proof. Let D̃ = {Dα : α ∈ ∆} be a D−cover of (X, τ1). Then D̃ is also a
D−cover of (X, τ2) , since τ1 ⊆ τ2. So it has a finite subcover. Hence the
result. �
Remark 3.5. In a topological space (X, τ), the least upper bound topology of
τ is the smallest topology defined on X that contains τ .

The following corollary can be proved easily.

Corollary 3.25. The topological space (X, τ) is D−compact , if (X, τ) is
D−compact, where τ is the least upper bound topology of τ .

Theorem 3.26. Every closed subspace of a D−compact space is D−compact.

Proof. Let X be a D−compact space and A be a closed subset X . Let D̃ =
{Dα : α ∈ ∆} be a D−cover of A by D−sets in X , then D̃ ∪ {X −A}is a
D−cover of X. So it has a finite subcover D̃∗ because X is D−compact. Now
D̃∗ − {X −A} is a finite subcover of D̃ for A. Hence the result. �
Theorem 3.27. Every closed subspace of a D−compact space is compact.

Proof. Let X be a D−compact space and A be a closed subset X . Let
Ũ = {Uα : α ∈ ∆} be an open cover of A by sets open in X , then Ũ ∪{X −A}is
an open cover of X. So it has a finite subcover Ũ∗ because X is a D−compact.
Now Ũ∗ − {X −A} is a finite subcover of Ũ for A. Hence the result. �

The following definitions can be found in [17].

Definition 3.28. (i) A space (X, τ) is said to be D0 if for any two distinct
points x and y in X , there exists a D−set Dxy in X such that x ∈ Dxy and
y /∈ Dxy or y ∈ Dxy and x /∈ Dxy.
(ii) A space (X, τ) is said to be D1 if for any two distinct points x and y in X
, there exists a D−sets G and H in X such that x ∈ G but y /∈ G and y ∈ H
but x /∈ H.
(iii) A space (X, τ) is said to be D2 if for any two distinct points x and y in X
, there exists disjoint D−sets G and H in X such that x ∈ G and y ∈ H .

Theorem 3.29. Let K be a D−compact subset of a locally indiscrete D2−space
(X, τ) , then ∀x /∈ K there exists two D−sets Dx and Dy such that x ∈ Dx ,
K ⊆ Dy and Dx ∩Dy = ϕ.

Proof. Let x ∈ X − K , then it is clear that ∀ y ∈ K we have x ̸= y. Since
X is a D2−space , there exists two D−sets D1y and D2y such that x ∈ D1y

, y ∈ D2y and D1y ∩ D2y = ϕ. Now , let D̃ = {D2y : y ∈ K}, then D̃ is
a D−cover of K. Since K is D−compact; D̃ has a finite subcover D̃∗ =

{D2y1 , D2y2 , ... , D2yn} .Now Let Dy =
n∪
i=1

D2yi and Dx =
n∩
i=1

D1yi , then Dx

and Dy are two D−sets such that x ∈ Dx , K ⊆ Dy and Dx ∩Dy = ϕ. �
The following theorem can be found in [13].
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Theorem 3.30. Let K be a compact subset of a T2−space (X, τ) , then ∀x /∈
K there exists two open sets Ux and Vx such that x ∈ Ux , K ⊆ Vx and
Ux ∩ Vx = ϕ.

Through this study, we will present to you strong and important results in
D−compact spaces that deepen the concept of the above theory. So we give some
theorems that illustrate the relation between compactness and D−compactness
in T2 and D2 spaces.

Theorem 3.31. Let K be a D−compact subset of a T2−space (X, τ) , then
∀x /∈ K there exists two open sets Ux and Vx such that x ∈ Ux , K ⊆ Vx and
Ux ∩ Vx = ϕ.

Proof. Let x ∈ X −K , then it is clear that ∀ y ∈ K we have x ̸= y. Since X
is a T2−space , there exists two open sets Uy and Vy such that x ∈ Uy , y ∈ Vy
and Uy ∩Vy = ϕ. Now , let Ṽ = {Vy : y ∈ K} , then Ṽ is an open cover of K
, hence it is a D−cover of K.. Since K is D−compact ; Ṽ has a finite subcover
Ṽ ∗ = {Vy1 , Vy2 , ... , Vyn} .Now Let Vx =

n∪
i=1

Vyi and Ux =
n∩
i=1

Uyi , then Ux

and Vx are two open sets such that x ∈ Ux , K ⊆ Vx and Ux ∩ Vx = ϕ. To
explain the last fact ; if Ux∩Vx ̸= ϕ then Ux∩Vyk ̸= ϕ for some k ∈ {1, 2, ..., n}.
So Uyk ∩ Vyk ̸= ϕ since Ux ⊆ Uyk. Which is a contradiction. �

Theorem 3.32. Any D−compact subset of a T2−space (X, τ) is closed.

Proof. Let X be a T2−space and K be a D−compact subset of X. Let x ∈
X −K , then by a previous theorem there exists two open sets Ux and Vx such
that x ∈ Ux , K ⊆ Vx and Ux ∩ Vx = ϕ.Now x ∈ Ux ⊆ X − Vx ⊆ X −K. So
X −K is open , hence the result. �

Theorem 3.33. Any D−compact subset of a locally indiscrete D2−space (X, τ)
is closed.

Proof. Let X be a locally indiscrete D2−space and K be a D−compact subset
of X. Let x ∈ X −K , then by a previous theorem there exists two D−sets Dx

and Dy such that x ∈ Dx , K ⊆ Dy and Dx ∩Dy = ϕ. Now x ∈ Dx ⊆ X −Dy

⊆ X −K. Since Dx is clopen then X −K is open , hence the result. �

As we mentioned at the beginning of this section, we will now present to you
some new definitions and general concepts related to them and their relationship
to D−compact spaces without delving into the study of these concepts.

Definition 3.34. (i) A topological space (X, τ) is called D−lindlöf if every
D−cover of the space (X, τ) has a countable subcover.

(ii) A topological space (X, τ) is called D−countably compact if every count-
able D−cover of the space (X, τ) has a finite subcover.

The following theories are very easy to prove.
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Theorem 3.35. (i) Every D−compact space (X, τ) is D−lindlöf.
(ii) Every D−compact space (X, τ) is D−countably compact.

Theorem 3.36. If X is a countable set , then (X, τ) is a D−lindlöf space for
any topology τ on X.

Theorem 3.37. Every D−lindlöf D−countably compact space (X, τ) is D−compact.

Theorem 3.38. Every closed subspace of a D−lindlöf (resp. D−countably
compact ) space is D−lindlöf (resp. D−countably compact ).

Theorem 3.39. The continuous image of a D−countably compact space is
D−countably compact.

4. Product of D-compact topological Spaces

In this section, we will consider all topological spaces are T2 unless otherwise
indicated.

Theorem 4.1. The continuous image of a D−compact space is D−compact.

Proof. Let f : X −→ Y be a continuous on-to function and X is a D−compact
space. Let D̃y = {Dα : α ∈ ∆} be aD−cover of Y . Now D̃x =

{
f−1 (Dα) : α ∈ ∆

}
is a D−cover of X. Since

∪
α∈∆

f−1 (Dα) = f−1

( ∪
α∈∆

Dα

)
= f−1 (Y ) = X and

X isD−compact, D̃x has a finite subcover
{
f−1 (Dα1) , f

−1 (Dα2) , ... , f
−1 (Dαn)

}
.

So {Dα1 , Dα2, ... , Dαn}is a finite subcover of D̃y for Y . Hence the result. �

Definition 4.2. Let X and Y be two topological spaces. A function f : X −→
Y is said to be D−irresolute function if the inverse image of any D−set in Y is
an open set in X.

Theorem 4.3. The D−irresoluteness image of a compact space is D−compact.

Proof. Let f : X −→ Y be a D−irresoluteness on-to function and X is a com-
pact space. Let D̃y = {Dα : α ∈ ∆} be a D−cover of Y . Since f : X −→
Y is D−irresolute, then D̃x =

{
f−1 (Dα) : α ∈ ∆

}
is an open cover of X

because
∪
α∈∆

f−1 (Dα) = f−1

( ∪
α∈∆

Dα

)
= f−1 (Y ) = X . Since X is com-

pact, D̃x has a finite subcover
{
f−1 (Dα1) , f

−1 (Dα2) , ... , f
−1 (Dαn)

}
. So

{Dα1 , Dα2, ... , Dαn}is a finite subcover of D̃y for Y . Hence the result. �

Theorem 4.4. Let f : X −→ Y be a perfect function. If X is locally indiscrete
space, then X is D−compact space if Y is so.

Proof. Let D̃ = {Dα : α ∈ ∆} be any D−cover of X. Now, since f is perfect,
for every y ∈ Y we have f−1 (y) is compact subset of X. So there exist finite
subsets ∆y of ∆ such that f−1 (y) ⊆

∪
α∈∆y

Dα. Now;
∪

α∈∆y

Dα is an open subset
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of X. Hence Oy = Y − f

(
X −

∪
α∈∆y

Dα

)
is an open subset of Y containing

y and f−1 (Oy) ⊆
∪

α∈∆y

Dα. So, Õ = {Oy : y ∈ Y } is an open cover of Y . Since

Y is D−compact, Õ has a finite subcover Õ∗ = {Oyi}
n
i=1 i.e. Y =

n∪
i=1

Oyi .

Thus, X = f−1 (Y ) = f−1

(
n∪
i=1

Oyi

)
=

n∪
i=1

f−1 (Oyi) .Since f−1 (Oyi) is subset

of a union of a finite number of members of D̃. Hence X is covered by a finite
members of D̃. Hence the result. �

Theorem 4.5. Let f : X −→ Y be a perfect function. Then X is compact
space if Y is D−compact.

Proof. In the same way as in the previous theory, this theory is easy to prove. �

For completeness, we recall the two well known definition and theorem in
general topology which play an important role here after.

Definition 4.6 (Engleking [6]). Let (X, τ) and (Y, σ) be two topological spaces.
Then the Cartesian product of (X, τ) and (Y, σ) is the topological space
(X × Y, τ × σ).

Theorem 4.7 (Engleking [6]). Let (X, τ) and (Y, σ) be two T2 topological spaces
and (X, τ) is compact , then the projection function Py : X × Y −→ Y is a
perfect function.

Theorem 4.8. Let (X, τ) and (Y, σ) be two Hausdorff locally indiscrete topo-
logical spaces such that X is compact and Y is a D−compact spaces. Then X×Y
is a D−compact.

Proof. We know that the projection function Py : X × Y −→ Y is a perfect
function. Since Y is D−compact , we conclude that X×Y is a D−compact. �

Corollary 4.9. The product of a compact Hausdorff topological space and a
locally indiscrete D−compact topological space is compact.

Theorem 4.10. Let (X, τ) and (Y, σ) be two T2 topological spaces and (X, τ)
is D−compact , then the projection function Py : X × Y −→ Y is a perfect
function.

Proof. We know that the projection function Py : X × Y −→ Y is a continuous
function. Since X×{y} ≃ X and X is D−compact , we conclude that X×{y}
is a D−compact. So for each y ∈ Y we have P−1

y (y) = X × {y} is D−compact
, hence it is compact. Finally we show that Py is closed. Let y ∈ Y and
P−1
y (y) = X × {y} ⊆ U where U is an open subset in X × Y.Now for each
x ∈ X there exists a basic open sets Vyx and Ux such that x ∈ Ux , y ∈ Vyx.
Now , Ũ = {Ux : x ∈ X} is an open cover of X. Since X is a D−compact space
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, Ũ has a finite subcover say {Uxi}ni=1. Let Oy =
n∩
i=1

Vyxi
, then Oy is an open

set containing y and P−1
y (Oy) = X ×Oy ⊆ U . Hence the result. �

Theorem 4.11. Let (X, τ) and (Y, σ) be two D−compact T2 locally indiscrete
topological spaces then the product X × Y is D−compact.

Proof. The projection function Py : X × Y −→ Y is a perfect function. So by
the previous theorem we obtain that X × Y is D−compact. �

Theorem 4.12. The product space
n∏
i=1

Xi is D−compact if and only if Xi is

locally indiscrete D−compact. for all i = 1, 2, ..., n.

Proof. =⇒ ) The projection function Pk :
n∏
i=1

Xi −→ Xk is continuous onto

function. Since
n∏
i=1

Xi isD−compact thenXk isD−compact for all i = 1, 2, ..., n.

⇐= ) Using the method of mathematical induction of proof it is easy to prove
this direction of theory. �

Theorem 4.13. Every continuous function from a D−compact space X on to
a T2 space Y is closed.

Proof. Let X be a D−compact space,Y be a T2 space and C be a closed subset
of X. Then C is D−compact. So f (C) is a D−compact subset in a T2 space
Y . Hence f (C) is closed. �

Theorem 4.14. Let f : X −→ Y be a continuous function of a D−compact
space X onto a T2 space Y then f (CL (A)) = CL (f (A)).

Proof. ⊆) Since f is continuous function we have f (CL (A)) ⊆ CL (f (A)).
⊇) SinceCL (A) is a closed subset of a D−compact space X then CL (A) is

D−compact. Since f is continuous we have f (CL (A)) is D−compact subset
in a T2 space Y .Hence f (CL (A)) is closed. Now f (A) ⊆ f (CL (A)) =⇒
CL (f (A)) ⊆ f (CL (A)). Hence the result. �
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