• 제목/요약/키워드: Tomato roots

검색결과 94건 처리시간 0.019초

토마토 뿌리조직 $H^+-ATPase$ 활성에 미치는 Thapsigargin의 저해효과 (Inhibitory Effect of Thapsigargin on the Activities of $H^+-ATPases$ in Tomato Roots)

  • 조광현;김영기
    • Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.212-216
    • /
    • 2005
  • Thapsigargin은 동물조직에서 ER/SR-type $Ca^{2+}-ATPase$의 선택적 저해제로서, 토마토 뿌리조직으로부터 분리한 마이크로솜에서 ATPase의 특성을 조사하기 위하여 사용되었다. Thapsigargin은 마이크로솜 ATPase 활성을 농도의존적으로 저해하였으며, $10\;{\mu}M$ 농도에서 총활성의 약 30%를 저해하였다. 이것은 뿌리조직에서 $Ca^{2+}-ATPase$의 활성이 매우 낮다는 것을 고려할 때, thapsigargin이 뿌리조직의 주된 ATPase 활성인 원형질막 및 액포막의 $H^+-ATPase$ 활성을 저해할 가능성을 보인다. Thapsigargin의 효과는 ${NO_3}^-$를 사용하여 액포막 $H^+-ATPase$ 활성을 저해하였을 때 현저하게 감소하였다. 그러나, thapsigargin의 효과는 원형질막의 $H^+-ATPase$ 활성에는 영향을 미치지 않아, thapsigargin이 토마토 뿌리조직에서 액포막 $H^+-ATPase$를 선택적으로 저해함을 보여준다.

토마토 유묘에 있어서 저온과 수분 스트레스에 대한 항산화효소의 활성 차이 (Differential Responses of Antioxidant Enzymes on Chilling and Drought Stress in Tomato Seedlings (Lycopersicon esculentum L.))

  • 강남준;조명환;이한철;최영하;엄영철
    • 생물환경조절학회지
    • /
    • 제16권2호
    • /
    • pp.121-129
    • /
    • 2007
  • 저온 또는 건조 처리에 따른 토마토 유묘의 생육과 부위별 항산화효소의 반응 양상을 분석한 결과, 토마토 유묘의 생체중은 처리 후 12일째에 대조구에 비해 각각 69.5% 와 50.6% 감소하였다. SOD와 POD의 활성은 대조구에 비해 저온 또는 건조 처리에서 높은 활성을 보였는데, 저온 처리시에는 뿌리에서 더 높은 활성을 보였고 건조 처리에서는 잎과 줄기에서 높은 활성을 보였다. 이러한 결과는 동위효소의 발현양상에서도 일치하였다. GR의 활성은 저온 또는 건조 처리시 대조구보다 높은 활성을 보였는데, 잎과 줄기에서는 저온과 건조 처리간의 차이는 없었지만, 뿌리에서는 건조 처리가 높은 경향을 보였다. GR 동위효소 발현양상은 저온과 건조처리시에는 GR-3 밴드가 잎에서는 발현되어 대조구와 차이가 있었지만, 줄기와 뿌리에서는 큰 차이가 없었다. PPO 활성은 잎에서는 모든 처리에서 차이가 없었지만, 줄기와 뿌리에서는 저온 또는 건조 처리에서 대조구보다 높은 경향을 보였다. 특히 줄기의 PPO 활성은 저온 처리보다 건조처리에서 높았고 뿌리의 PPO 활성은 건조 처리보다 저온 처리에서 높았다. 동위효소의 발현양상에서도 건조처리에서는 줄기에서, 저온 처리에서는 뿌리에서 높은 밀도를 보여 불량 환경에 따른 부위별 반응 차이를 잘 반영해 주었다.

장변대황(Rheum australe D. Don)으로부터 분리된 토마토 시들음병원균(Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen)에 대한 항진균 활성물질 구명 (Isolation of Antifungal Activity Substance from Rheum australe D. Don Roots against Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen)

  • 최지수;이동운;최용화
    • 한국유기농업학회지
    • /
    • 제28권1호
    • /
    • pp.95-108
    • /
    • 2020
  • To develop an environment-friendly fungicide for controlling tomato wilt diseases, antifungal active substance was isolated Rheum australe D. Don roots against Fusarium oxysporum f. sp. lycopersici, a pathogen of tomato wilt, in this study. Methanol extract obtained from Rheum australe roots was successively fractionated with hexane, chloroform, ethyl acetate, butanol and water. The ethyl acetate fraction, which showed the highest antifungal activity, was separated by column chromatography, and 60 subfractions were obtained. The 60 subfractions were anlayzed for antifungal activities by bioassay. The active compound was identified as 5-[(E)-2- (3-hydroxy-4-methoxyphenyl)ethenyl]benzene-1,3-diol (rhapontigenin) by NMR and GC-MS analysis. As a result of testing antifungal activity of rhapontigenin against Fusarium oxysporum, EC50 of rhapontigenin was showed strong antifungal activity at 7.48 mg/L. Therefore, this study showed that the Rheum australe roots extract can be a potential candidate which is a environment-friendly fungicide against Fusarium oxysporum.

Changes of Thiols and Oxidative Stress in Tomato Seedlings Exposed to Cadmium

  • Cho, Un-Haing;Seo, Nam-Ho
    • Journal of Ecology and Environment
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 2006
  • Tomato (Lycopersicon esculentum Mill) seedlings exposed to various concentrations of $CdCl_2(0{\sim}100{\mu}M)$ in a nutrient solution for up to 9 days were analyzed with respect to the thiol changes and oxidative stress. The Cd exposure increased total non-protein thiols (NPT) and cysteine in both leaves and roots, total glutathione in leaves, and the ratios of oxidized glutathione (GSSG)/reduced glutathione (GSH) in both leaves and roots, but decreased the ratio of dehydroascorbate (DASA)/ascorbate(ASA) in leaves. Our results suggest that the Cd-induced GSH depletion due to thiol synthesis and oxidation alters the antioxidant activity of seedlings for $H_2O_2$, and the subsequent $H_2O_2$ accumulationand oxidative stress result in phytotoxicity.

Corky Root of Tomato Caused by Pyrenochaeta lycopersici in Korea

  • Kim, Jong-Tae;Park, In-Hee;Ryu, Kyoung-Yul;Cheon, Jeong-Uk;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • 제19권3호
    • /
    • pp.181-183
    • /
    • 2003
  • Corky root symptoms caused by Pyrenochaeta lycopersici were observed on the roots and stem base of tomato plants in Korea. Symptoms on infected plants typically appeared as stunting and generally lacking vigor, and infected plants die back from the foliage tips after fruits have set. Brown lesions appearing with bands around the roots were characteristic symptoms of the disease. The lesions become swollen and cracked along the length of the root with corky appearance. Based on cultural and morphological characteristics, the fungus from the diseased plants was identified as Pyrenochaeta lycopersici. Pycnidia were solitary, globose to subglobose, brown to black, darker around the neck region, and measured 173-215 $\mu\textrm{m}$ in diameter with septate setae up to 102-132$\times$6.5 $\mu\textrm{m}$. Conidia were hyaline, unicellular, and 4.2-4.7$\times$l.5-2.0 $\mu\textrm{m}$ long. Optimum temperature for mycelial growth of the p. lycopersici isolates ranged from $20^{\circ}C$ to $25^{\circ}C$. Fifteen isolates off lycopersici were tested for pathogenicity to susceptible and tolerant cultivars of tomato plants by artificial inoculation. Three isolates of P. lycopersici induced typical corky root discoloration on susceptible tomato cultivars but not on tolerant tomato. This is the Erst report in Korea of tomato corky root disease caused by P. lycopersici.

토마토식물의 독성물질에 대한 타 식물의 민감도 검정 (A Bioassay on Susceptivity of Selected Species to Phytotoxic Substances from Tomato Plants)

  • 김영식
    • Journal of Plant Biology
    • /
    • 제30권1호
    • /
    • pp.59-67
    • /
    • 1987
  • To verify allelopathic effect of tomato plants a number of labovatory experiments, seed germination and seedling growth with aqueous extracts and leachates form the tomato plants, have performed. Germination percentage of the tested species was decreased by treatment with leaf, stem and root extracts as extracting time elapses. The leaf extract more inhibits the germination of the seeds than both stem and root extracts. Leachate collected from the tomato plants decreases as much as 50% of the growths in elongation as well as dry weight of seedlings of lettuce and egg plant. It is observed that with a paired-plants grown in U tube pot the tomato roots have excreted allelochemicals to inhibit the growth of the tested species and volatile substances from the tomato plants have suppressed to dry weights of lettuce, to elongation and dry weights of grapevine planted near the tomato plants.

  • PDF

Secondary Metabolite Profiling in Various Parts of Tomato Plants

  • Kim, Dong Sub;Na, Haeyoung;Kwack, Yurina;Chun, Changhoo
    • 원예과학기술지
    • /
    • 제32권2호
    • /
    • pp.252-260
    • /
    • 2014
  • Contents of carotenoids, phenolic compounds, volatile organic compounds, and alkaloids in leaves, internodes, fruits, and roots of tomatoes in different developmental stages were measured. Lycopene, ${\beta}$-carotene, and lutein were detected in all the tested parts except roots and green fruits. Lycopene content in red fruits was $49.04{\mu}g{\cdot}g^{-1}$ FW, while that in the other parts was below $40{\mu}g{\cdot}g^{-1}$ FW. ${\beta}$-Carotene and lutein contents in 24th leaves were 5.81 and $6.40{\mu}g{\cdot}g^{-1}$ FW, respectively, and were greater than those in the other parts. Caffeic, chlorogenic, and vanillic acids were detected in all the tested parts except roots. The content of chlorogenic acid in the 18th leaves was $40.11{\mu}g{\cdot}g^{-1}$ FW, while that in the other parts was lower than $31.00{\mu}g{\cdot}g^{-1}$ FW. The contents of caffeic and vanillic acids in the 24th leaves were 9.18 and $1.64{\mu}g{\cdot}g^{-1}$ FW, respectively, and were greater than those in the other parts. Moreover, younger leaves contained the more diverse volatile organic compounds including monoterpenes and sesquiterpenes. Contents of dehydro-tomatine and ${\alpha}$-tomatine were greatest in leaves, followed by internodes, roots and fruits. Younger leaves and internodes contained more dehydro-tomatine and ${\alpha}$-tomatine than older leaves and internodes. The contents of dehydro-tomatine and ${\alpha}$-tomatine in the 24th leaves were 0.89 and $1.42mg{\cdot}g^{-1}$ FW, respectively, and were greatest among all the tested parts. Our results indicated that, except lycopene, tomato leaves included greater secondary metabolites contents than red fruits. The results suggest that inedible parts of tomato plants can be used as raw material for antioxidants, anti-inflammatory agents, fungistats, and pesticides.

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

  • Lee, Yong Seong;Naing, Kyaw Wai;Kim, Kil Yong
    • 식물병연구
    • /
    • 제23권4호
    • /
    • pp.295-305
    • /
    • 2017
  • This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Distribution and Phytotoxicity of Mercury in Tomato Seedlings Exposed to Mercury

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • 제22권2호
    • /
    • pp.89-94
    • /
    • 1999
  • Thirty-day-old seedlings of tomato (Lycopersicon esculentum) were treated with different concentrations of HgCl$_2$(0. 10 and 50 $\mu$M) for up to 20 days. and the detailed distribution of Hg absorbed and its toxicity in different plant parts (roots, stems and leaves) were investigated. The accumulation of Hg in plants increased with external Hg concentrations. and Hg is strongly retained by roots. Further. Hg content in leaves was various. showing more accumulation in older leaves. Seedlings exposed to toxic levels of Hg showed not only the reduction of dry weight and length of both shoot and root. and chlorophyll levels in leaves but also the enhancement of malondialdehyde (a lipid peroxidation product) formation in all plant parts investigated. These results suggest that physiological impairment of a plant exposed to Hg may be achieved by internal distribution of Hg absorbed and Hg-induced oxidative stress in different plant parts.

  • PDF