DOI QR코드

DOI QR Code

Changes of Thiols and Oxidative Stress in Tomato Seedlings Exposed to Cadmium

  • Cho, Un-Haing (Department of Biology, Changwon National University) ;
  • Seo, Nam-Ho (Department of Biology, Changwon National University)
  • 발행 : 2006.02.01

초록

Tomato (Lycopersicon esculentum Mill) seedlings exposed to various concentrations of $CdCl_2(0{\sim}100{\mu}M)$ in a nutrient solution for up to 9 days were analyzed with respect to the thiol changes and oxidative stress. The Cd exposure increased total non-protein thiols (NPT) and cysteine in both leaves and roots, total glutathione in leaves, and the ratios of oxidized glutathione (GSSG)/reduced glutathione (GSH) in both leaves and roots, but decreased the ratio of dehydroascorbate (DASA)/ascorbate(ASA) in leaves. Our results suggest that the Cd-induced GSH depletion due to thiol synthesis and oxidation alters the antioxidant activity of seedlings for $H_2O_2$, and the subsequent $H_2O_2$ accumulationand oxidative stress result in phytotoxicity.

키워드

참고문헌

  1. Alscher RG. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plantarum 77: 457-464 https://doi.org/10.1111/j.1399-3054.1989.tb05667.x
  2. Asada K. 1992. Ascorbate peroxidase – A hydrogen peroxide scavenging enzyme in plants. Physiol Plantarum 85: 235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  3. Barcelo J, Poschenrieder C. 1990. Plant water relations as affected by heavy metal stress: A review. J Plant Nutr 13: 1-37
  4. Buwalda F, Stulen I, De Kok LJ, Kuiper PJC. 1990. Cysteine, ${\gamma}$- glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. II. Glutathione accumulation in detached leaves exposed to $H_2S$ in the absence of light is stimulated by the supply of glycine to the petiole. Physiol Plantarum 80: 196-204 https://doi.org/10.1111/j.1399-3054.1990.tb04396.x
  5. Cho UH, Park JO. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Science 156: 1-9 https://doi.org/10.1016/S0168-9452(00)00227-2
  6. Cho UH. 2004. Cadmium-induced phytotoxicity in tomato seedlings due to the accumulation of $H_2O_2$ that results from the reduced activities of H2O2 detoxifying enzymes. Korean J Ecol 27: 107- 114 https://doi.org/10.5141/JEFB.2004.27.2.107
  7. Cho UH, Seo NH. 2005. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science 168: 113-120 https://doi.org/10.1016/j.plantsci.2004.07.021
  8. Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E. 1997. Candmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science 127: 139-147 https://doi.org/10.1016/S0168-9452(97)00115-5
  9. De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO. 1991. Increased resistance to copper-induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus. Physiol Plant 82: 523-528 https://doi.org/10.1111/j.1399-3054.1991.tb02942.x
  10. De Vos CHR, Vonk M, Vooijs R, Schat H. 1992. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Sulene cucubalus. Plant Physiol 98: 853-858 https://doi.org/10.1104/pp.98.3.853
  11. De Vos CHR, Ten Boukum WM, Vooijs R, Schat H, De Kok LJ. 1993. Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper-tolerant and–sensitive Silene cucubalus. Plant Physiol Biochem 31: 151-158
  12. Delhaize E, Jackson PJ, Lujan LD, Robisnson NJ. 1989. Poly (${\gamma}$- glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiol 89: 700-706 https://doi.org/10.1104/pp.89.2.700
  13. Dixit V, Pandey V, Shyam R. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52: 1101-1109 https://doi.org/10.1093/jexbot/52.358.1101
  14. Ebbs S, Lau I, Ahner B, Kochian LV. 2002. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulatior Thlapsi (J&C. Presl). Planta 214: 635-640 https://doi.org/10.1007/s004250100650
  15. Ernst WHO, Nelissen HJM, Ten Bookum WM. 2000. Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic sols. Env Exp Bot 43: 55-71 https://doi.org/10.1016/S0098-8472(99)00048-9
  16. Fadzilla NM, Finch RP, Burdon RH. 1997. Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J Exp Bot 48: 325-331 https://doi.org/10.1093/jxb/48.2.325
  17. Foyer CH, Lelandais M, Kunert KJ. 1994. Photooxidative stress in plants. Physiol Plant 92: 696-717 https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  18. Gaitonde MK. 1967. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104: 627-633 https://doi.org/10.1042/bj1040627
  19. Grill E, Winnacker E-L, Zenk MH. 1985. Phytochelatins: the principal heavy-metal complexing peptites of higher plants. Science 230: 674-676 https://doi.org/10.1126/science.230.4726.674
  20. Ha SB, Smith PAP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11: 1153-1163 https://doi.org/10.1105/tpc.11.6.1153
  21. Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14 https://doi.org/10.1042/bj2190001
  22. Hegedus A, Erdei S, Horvath G. 2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science 160: 1085-1093 https://doi.org/10.1016/S0168-9452(01)00330-2
  23. Hoagland DR, Arnon DI. 1938. The water culture method for growing plants without soil. Cal Agri Exp Station Circular 347: 1-39
  24. Jackson PJ, Unketer CJ, Doolen IA, Katt K, Robinson NJ. 1987. Poly (${\gamma}$-glutamylcysteinyl) glycine: its role in cadmium reistance in plant cells. Proc Natl Acad Sci USA 84: 6619-6623
  25. Kessler A, Brand MD. 1995. The mechanism of the stimulation of state 4 respirartion by cadmium in potato tuber (Solanum tuberosum) mitochondria. Plant Physiol Biochem 33: 519-528
  26. Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH. 2004. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspicaerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134: 748-757 https://doi.org/10.1104/pp.103.032953
  27. Law MY, Charles SA, Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem J 210: 899-903 https://doi.org/10.1042/bj2100899
  28. Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS. 2003. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131: 1-8 https://doi.org/10.1104/pp.900061
  29. Mehra RK, Tripathi RD. 2000. Phytochelatins and metal tolerance. In : Environmental Pollution and Plant Responses (Agrawal SB, Agrawal M, eds). CRC Press, Boca Raton. pp 367-382
  30. Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H. 1996. Synthesis of glutathione in leaves of transgenic poplar (Populus tremula ${\times}$ P. alba) overexpressing ${\gamma}$-glutamylcysteine synthetase. Plant Physiol 112: 1071-1078 https://doi.org/10.1104/pp.112.3.1071
  31. Noctor G, Foyer CH. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249-279 https://doi.org/10.1146/annurev.arplant.49.1.249
  32. Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH. 1998a. Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623-647 https://doi.org/10.1093/jexbot/49.321.623
  33. Noctor G, Arisi ACM, Jouanin L, Foyer CH. 1998b. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118: 362-372
  34. Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH. 1997. Cadmium- and copper-induced changes in tomato membrane lipids. Phytochemistry 45: 1343-1350 https://doi.org/10.1016/S0031-9422(97)00159-3
  35. Pilon-Smits EAH, Zhu Y, Sears T, Terry N. 2000. Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plantarum 110: 455-460 https://doi.org/10.1111/j.1399-3054.2000.1100405.x
  36. Rauser WE. 1987. Changes in glutathione content of maize seedlings exposed to cadmium. Plant Science 51: 171-175 https://doi.org/10.1016/0168-9452(87)90190-7
  37. Rauser WE. 1995. Phytochelatins and related peptides: Structure, biosynthesis, and function. Plant Physiol 109: 1141-1149 https://doi.org/10.1104/pp.109.4.1141
  38. Ruegsegger A, Brunold C. 1992. Effect of cadmium on ${\gamma}$-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99: 428-433 https://doi.org/10.1104/pp.99.2.428
  39. Salt DE, Thurman DA, Tomsett AB, Sewell AK. 1989. Copper phytochelatins of Mimulus guttatus. Proc R Soc Lond 236: 79-89
  40. Sanita di Toppi LA, Gabbrielli R. 1999. Responses to cadmium in higher plants. Environ Exp Bot 41: 105-130 https://doi.org/10.1016/S0098-8472(98)00058-6
  41. Schaedle M. 1977. Chloroplast glutathione reductase. Plant Physiol 59: 1011-1012 https://doi.org/10.1104/pp.59.5.1011
  42. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker P. 2002. The role of phytovhelatins in constitutive and adaptative heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53: 2381-2392 https://doi.org/10.1093/jxb/erf107
  43. Scheller HV, Huang B, Hatch E, Goldsbrough PB. 1987. Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85: 1031-1035 https://doi.org/10.1104/pp.85.4.1031
  44. Schneider S, Bergmann L. 1995. Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. Bot Acta 108: 34-40 https://doi.org/10.1111/j.1438-8677.1995.tb00828.x
  45. Schutzendubel A, Schwanz P, Teichmann T, Gross K. 2001. Cadmium- induced changes in antioxodative systems, hydrogen peroxide content, and differentiation in Scots Pine roots. Plant Physiol 127: 887-898 https://doi.org/10.1104/pp.010318
  46. Siedlecka A, Baszynski T. 1993. Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plantarum 87: 199-202 https://doi.org/10.1111/j.1399-3054.1993.tb00142.x
  47. Steffens JC, Hunt DF, Williams BG. 1986. Accumulation of nonprotein metal-binding polypeptides $({\gamma}-glutamyl-cysteinyl)_n$- glycine in selected cadmium-resistant tomato cells. J Biol Chem 261: 13879-13882
  48. Tukendorf A, Rauser WE. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science 70: 155-166 https://doi.org/10.1016/0168-9452(90)90129-C
  49. Verkleij JAC, Bast-Cramer WB, Levering H. 1985. Effects of heavy metal stress on the genetic structure of populations of Silene cucubalus. In: Structure and Functioning of Plant Populations (Haek J, Woldendorp JW, eds). Noord-Holland, Amsterdam, pp 355-365
  50. Vogeli-Lange R, Wagner GW (1996) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Science 114: 11-18 https://doi.org/10.1016/0168-9452(95)04299-7
  51. Weckx JEJ, Clijsters HMM. 1997. Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35: 405-410
  52. Williams CH. 1976. Flavin containing enzymes. In: The enzymes, Vol XIII (Boer PD, ed). Academic Press, New York. pp 89-173
  53. Wise RR, Naylor AW. 1987. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants. Plant Physiol 83: 278-282 https://doi.org/10.1104/pp.83.2.278
  54. Xiang C, Werner BL, Christensen EM, Oliver DJ. 2001. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126: 564-574 https://doi.org/10.1104/pp.126.2.564
  55. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N. 1999. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119: 73-79 https://doi.org/10.1104/pp.119.1.73

피인용 문헌

  1. Glutathione homeostasis and Cd tolerance in the Arabidopsis sultr1;1-sultr1;2 double mutant with limiting sulfate supply vol.35, pp.2, 2016, https://doi.org/10.1007/s00299-015-1892-8