Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.4.295

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato  

Lee, Yong Seong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Naing, Kyaw Wai (Vegetable and Fruit Research and Development Center)
Kim, Kil Yong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
Research in Plant Disease / v.23, no.4, 2017 , pp. 295-305 More about this Journal
Abstract
This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.
Keywords
Alternaria solani; Bacterial grass culture; Biocontrol; Botrytis cinerea; Paenibacillus ehimensis KWN38;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahemad, M. and Khan, M. S. 2012. Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J. Biol. Sci. 19: 451-459.   DOI
2 Algam, S. A. E., Mahdi, A. A., Li, B. and Xie, G. L. 2013. Effects of chemical inducers and Paenibacillus on tomato growth promotion and control of bacterial wilt. Asian J. Plant Pathol. 7: 15-28.   DOI
3 Almaghrabi, O. A., Massoud, S. I. and Abdelmoneim, T. S. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20: 57-61.   DOI
4 Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260.
5 Bergougnoux, V. 2014. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 32: 170-189.   DOI
6 Chen, S. K., Edwards, C. A. and Subler, S. 2001. A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Appl. Soil Ecol. 18: 69-82.   DOI
7 Bloemberg, G. V. and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350.   DOI
8 Budi, S. W., van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199.   DOI
9 Chaudhry, V., Chauhan, P. S., Mishra, A., Goel, R., Asif, H. H., Mantri, S. S., Bag, S. K., Singh, S. K., Sawant, S. V. and Nautiyal, C. S. 2013. Insights from the draft genome of Paenibacillus lentimorbus NRRL B-30488, a promising plant growth promoting bacterium. J. Biotechnol. 168: 737-738.   DOI
10 de la Noval, B., Perez, E., Martinez, B., Leon, O., Martinez-Gallardo, N. and Delano-Frier, J. 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17: 449-460.   DOI
11 Deng, S. P. and Tabatabai, M. A. 1994. Cellulase activity of soils. Soil Biol. Biochem. 26: 1347-1354.   DOI
12 Jung, W. J., Jin, Y. L., Kim, Y. C., Kim, K. Y., Park, R. D. and Kim, T. H. 2004. Inoculation of Paenibacillus illinoisensis alleviates root mortality, activates of lignification-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici. Biol. Control 30: 645-652.   DOI
13 Filho, R. L., Romeiro, R. S. and Alves, E. 2010. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesq. Agropec. Bras. Brasilia 45: 1381-1387.   DOI
14 Foolad, M. R., Merk, H. L. and Ashrafi, H. 2008. Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit. Rev. Plant Sci. 27: 75-107.   DOI
15 Gu, Y., Wang, P. and Kong, C. H. 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur. J. Soil Biol. 45: 436-441.   DOI
16 Huang, Z., Hu, Y., Shou, L. and Song, M. 2013. Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiol. 13: 87.   DOI
17 Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1991. Infectious Diseases: Diseases Caused by Fungi. Compendium of Tomato Diseases. pp. 9-25. The American Phytopathological Society, St. Paul, MN, USA.
18 Kang, B. R., Ko, S. J., Kim, D. I., Choi, D. S. and Kim, S. G. 2011. Determination of proper application timing and frequency for management of tomato leaf mold disease by commercially available microbial preparations. Res. Plant Dis. 17: 142-147.   DOI
19 Khan, N., Mishra, A. and Shekhar, C. 2012. Paenibacillus lentimorbus B-30488 controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biol. Control 62: 65-74.   DOI
20 Knievel, D. P. 1973. Procedures for estimating ratio of live or dead root dry matter in root core samples. Crop Sci. 13: 124-126.   DOI
21 Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81: 557-564.   DOI
22 Lal, S. and Tabacchioni, S. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49: 2-10.   DOI
23 Lee, S. M., Jung, J. Y. and Chung, Y. C. 2000. Measurement of ammonia inhibition of microbial activity in biological wastewater treatment process using dehydrogenase assay. Biotechnol. Lett. 22: 991-994.   DOI
24 Li, J. and Jensen, S. 2008. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a damino acid. Chem. Biol. 15: 118-127.   DOI
25 Myresiotis, C. K., Vryzas, Z. and Papadopoulou-Mourkidou, E. 2014. Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growthpromoting rhizobacteria (PGPR). Appl. Soil Ecol. 77: 26-33.   DOI
26 Naing, K. W., Anees, M., Kim, S. J., Nam, Y., Kim, Y. C. and Kim, K. Y. 2014a. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64: 55-63.   DOI
27 Naing, K. W., Anees, M., Nguyen, X. H., Lee, Y. S., Jeon, S. W., Kim, S. J., Kim, M. H. and Kim, K.Y. 2014b. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38. J. Phytopathol. 162: 367-376.   DOI
28 Nielsen, P. and Sorensen, J. 1997. Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22: 183-192.   DOI
29 Qian, C. D., Wu, X. C., Teng, Y., Zhao, W. P., Li, O., Fang, S. G., Huang, Z. H. and Gao, H.C. 2012. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob. Agents Chemother. 56: 1458-1465.   DOI
30 Ordentlich, A., Elad, Y. and Chet, L. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phythopathology 78: 84-88.
31 Richter, B. S., Ivors, K., Shi, W. and Benson, D. M. 2011. Cellulase activity as a mechanism for suppression of Phytophthora root rot in mulches. Phytopathology 101: 223-230.   DOI
32 Riso, P., Visioli, F., Erba, D., Testolin, G. and Porrini, M. 2004. Lycopene and vitamin C concentrations increase in plasma and lymphocytes after tomato intake. Effects on cellular antioxidant protection. Eur. J. Clin. Nutr. 58: 1350-1358.   DOI
33 Shaheen, M., Li, J., Ross, A. C., Vederas, J. C. and Jensen, S. E. 2011. Paenibacillus polymyxa PKB1 produces variants of polymyxin Btype antibiotics. Chem. Biol. 18: 1640-1648.   DOI
34 Shetty, N. P., Jensen, J. D., Knudsen, A., Finnie, C., Geshi, N., Blennow, A., Collinge, D. B. and Jorgensen, H. J. 2009. Effects of beta-1,3-glucan from Septoria tritici on structural defence responses in wheat. J. Exp. Bot. 60: 4287-300.   DOI
35 Son, S. H., Khan, Z., Kim, S. G. and Kim, Y. H. 2009. Plant growthpromoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by rootknot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107: 524-532.   DOI
36 Tabatabai, M. A. 1982. Soil enzymes. In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, eds. by A. L. Page, R. H. Miler and D. R. Keeney, pp. 903-947. American Society of Agronomy, Madison, WI, USA.
37 Willcox, J. K., Catignani, G. L. and Lazarus, S. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43: 1-18.   DOI
38 Toresani, S., Gomez, E., Bonel, B., Bisaro, V. and Montico, S. 1998. Cellulolytic population dynamics in a vertic soil under three tillage systems in the humid pampa of Argentina. Soil Till. Res. 49: 79-83.   DOI
39 Trabelsi, D. and Mhamdi, R. 2013. Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res. Int. 2013: 863240.
40 von der Weid, I., Alviano, D. S., Santos, A. L., Soares, R. M., Alviano, C. S. and Seldin, L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95: 1143-1151.   DOI
41 Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580.   DOI
42 Zhao, L. J., Yang, X. N., Li, X. Y., Mu, W. and Liu, F. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa Strain BMP-11. Agr. Sci. China 10: 728-736.   DOI
43 Zhao, Y., Li, W., Zhou, Z., Wang, L., Pan, Y. and Zhao, L. 2005. Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. Eur. J. Soil Biol. 41: 21-29.   DOI