DOI QR코드

DOI QR Code

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

  • Lee, Yong Seong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Naing, Kyaw Wai (Vegetable and Fruit Research and Development Center) ;
  • Kim, Kil Yong (Division of Food Technology, Biotechnology and Agrochemistry, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2017.06.03
  • Accepted : 2017.08.25
  • Published : 2017.12.31

Abstract

This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

Keywords

References

  1. Ahemad, M. and Khan, M. S. 2012. Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J. Biol. Sci. 19: 451-459. https://doi.org/10.1016/j.sjbs.2012.06.003
  2. Algam, S. A. E., Mahdi, A. A., Li, B. and Xie, G. L. 2013. Effects of chemical inducers and Paenibacillus on tomato growth promotion and control of bacterial wilt. Asian J. Plant Pathol. 7: 15-28. https://doi.org/10.3923/ajppaj.2013.15.28
  3. Almaghrabi, O. A., Massoud, S. I. and Abdelmoneim, T. S. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J. Biol. Sci. 20: 57-61. https://doi.org/10.1016/j.sjbs.2012.10.004
  4. Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260.
  5. Bergougnoux, V. 2014. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 32: 170-189. https://doi.org/10.1016/j.biotechadv.2013.11.003
  6. Bloemberg, G. V. and Lugtenberg, B. J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
  7. Budi, S. W., van Tuinen, D., Arnould, C., Dumas-Gaudot, E., Gianinazzi-Pearson, V. and Gianinazzi, S. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol. 15: 191-199. https://doi.org/10.1016/S0929-1393(00)00095-0
  8. Chaudhry, V., Chauhan, P. S., Mishra, A., Goel, R., Asif, H. H., Mantri, S. S., Bag, S. K., Singh, S. K., Sawant, S. V. and Nautiyal, C. S. 2013. Insights from the draft genome of Paenibacillus lentimorbus NRRL B-30488, a promising plant growth promoting bacterium. J. Biotechnol. 168: 737-738. https://doi.org/10.1016/j.jbiotec.2013.10.010
  9. Chen, S. K., Edwards, C. A. and Subler, S. 2001. A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Appl. Soil Ecol. 18: 69-82. https://doi.org/10.1016/S0929-1393(01)00135-4
  10. de la Noval, B., Perez, E., Martinez, B., Leon, O., Martinez-Gallardo, N. and Delano-Frier, J. 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17: 449-460. https://doi.org/10.1007/s00572-007-0122-9
  11. Deng, S. P. and Tabatabai, M. A. 1994. Cellulase activity of soils. Soil Biol. Biochem. 26: 1347-1354. https://doi.org/10.1016/0038-0717(94)90216-X
  12. Filho, R. L., Romeiro, R. S. and Alves, E. 2010. Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesq. Agropec. Bras. Brasilia 45: 1381-1387. https://doi.org/10.1590/S0100-204X2010001200007
  13. Foolad, M. R., Merk, H. L. and Ashrafi, H. 2008. Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit. Rev. Plant Sci. 27: 75-107. https://doi.org/10.1080/07352680802147353
  14. Gu, Y., Wang, P. and Kong, C. H. 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur. J. Soil Biol. 45: 436-441. https://doi.org/10.1016/j.ejsobi.2009.06.003
  15. Huang, Z., Hu, Y., Shou, L. and Song, M. 2013. Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiol. 13: 87. https://doi.org/10.1186/1471-2180-13-87
  16. Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1991. Infectious Diseases: Diseases Caused by Fungi. Compendium of Tomato Diseases. pp. 9-25. The American Phytopathological Society, St. Paul, MN, USA.
  17. Jung, W. J., Jin, Y. L., Kim, Y. C., Kim, K. Y., Park, R. D. and Kim, T. H. 2004. Inoculation of Paenibacillus illinoisensis alleviates root mortality, activates of lignification-related enzymes, and induction of the isozymes in pepper plants infected by Phytophthora capsici. Biol. Control 30: 645-652. https://doi.org/10.1016/j.biocontrol.2004.03.006
  18. Kang, B. R., Ko, S. J., Kim, D. I., Choi, D. S. and Kim, S. G. 2011. Determination of proper application timing and frequency for management of tomato leaf mold disease by commercially available microbial preparations. Res. Plant Dis. 17: 142-147. https://doi.org/10.5423/RPD.2011.17.2.142
  19. Khan, N., Mishra, A. and Shekhar, C. 2012. Paenibacillus lentimorbus B-30488 controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biol. Control 62: 65-74. https://doi.org/10.1016/j.biocontrol.2012.03.010
  20. Knievel, D. P. 1973. Procedures for estimating ratio of live or dead root dry matter in root core samples. Crop Sci. 13: 124-126. https://doi.org/10.2135/cropsci1973.0011183X001300010043x
  21. Lal, S. and Tabacchioni, S. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49: 2-10. https://doi.org/10.1007/s12088-009-0008-y
  22. Lee, S. M., Jung, J. Y. and Chung, Y. C. 2000. Measurement of ammonia inhibition of microbial activity in biological wastewater treatment process using dehydrogenase assay. Biotechnol. Lett. 22: 991-994. https://doi.org/10.1023/A:1005637203643
  23. Li, J. and Jensen, S. 2008. Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a damino acid. Chem. Biol. 15: 118-127. https://doi.org/10.1016/j.chembiol.2007.12.014
  24. Mazzola, M. 2002. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81: 557-564. https://doi.org/10.1023/A:1020557523557
  25. Myresiotis, C. K., Vryzas, Z. and Papadopoulou-Mourkidou, E. 2014. Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growthpromoting rhizobacteria (PGPR). Appl. Soil Ecol. 77: 26-33. https://doi.org/10.1016/j.apsoil.2014.01.005
  26. Naing, K. W., Anees, M., Kim, S. J., Nam, Y., Kim, Y. C. and Kim, K. Y. 2014a. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann. Microbiol. 64: 55-63. https://doi.org/10.1007/s13213-013-0632-y
  27. Naing, K. W., Anees, M., Nguyen, X. H., Lee, Y. S., Jeon, S. W., Kim, S. J., Kim, M. H. and Kim, K.Y. 2014b. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38. J. Phytopathol. 162: 367-376. https://doi.org/10.1111/jph.12198
  28. Nielsen, P. and Sorensen, J. 1997. Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22: 183-192. https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
  29. Ordentlich, A., Elad, Y. and Chet, L. 1988. The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phythopathology 78: 84-88.
  30. Qian, C. D., Wu, X. C., Teng, Y., Zhao, W. P., Li, O., Fang, S. G., Huang, Z. H. and Gao, H.C. 2012. Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria. Antimicrob. Agents Chemother. 56: 1458-1465. https://doi.org/10.1128/AAC.05580-11
  31. Richter, B. S., Ivors, K., Shi, W. and Benson, D. M. 2011. Cellulase activity as a mechanism for suppression of Phytophthora root rot in mulches. Phytopathology 101: 223-230. https://doi.org/10.1094/PHYTO-04-10-0125
  32. Riso, P., Visioli, F., Erba, D., Testolin, G. and Porrini, M. 2004. Lycopene and vitamin C concentrations increase in plasma and lymphocytes after tomato intake. Effects on cellular antioxidant protection. Eur. J. Clin. Nutr. 58: 1350-1358. https://doi.org/10.1038/sj.ejcn.1601974
  33. Shaheen, M., Li, J., Ross, A. C., Vederas, J. C. and Jensen, S. E. 2011. Paenibacillus polymyxa PKB1 produces variants of polymyxin Btype antibiotics. Chem. Biol. 18: 1640-1648. https://doi.org/10.1016/j.chembiol.2011.09.017
  34. Shetty, N. P., Jensen, J. D., Knudsen, A., Finnie, C., Geshi, N., Blennow, A., Collinge, D. B. and Jorgensen, H. J. 2009. Effects of beta-1,3-glucan from Septoria tritici on structural defence responses in wheat. J. Exp. Bot. 60: 4287-300. https://doi.org/10.1093/jxb/erp269
  35. Son, S. H., Khan, Z., Kim, S. G. and Kim, Y. H. 2009. Plant growthpromoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by rootknot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107: 524-532. https://doi.org/10.1111/j.1365-2672.2009.04238.x
  36. Tabatabai, M. A. 1982. Soil enzymes. In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, eds. by A. L. Page, R. H. Miler and D. R. Keeney, pp. 903-947. American Society of Agronomy, Madison, WI, USA.
  37. Toresani, S., Gomez, E., Bonel, B., Bisaro, V. and Montico, S. 1998. Cellulolytic population dynamics in a vertic soil under three tillage systems in the humid pampa of Argentina. Soil Till. Res. 49: 79-83. https://doi.org/10.1016/S0167-1987(98)00157-3
  38. Trabelsi, D. and Mhamdi, R. 2013. Microbial inoculants and their impact on soil microbial communities: a review. BioMed Res. Int. 2013: 863240.
  39. von der Weid, I., Alviano, D. S., Santos, A. L., Soares, R. M., Alviano, C. S. and Seldin, L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95: 1143-1151. https://doi.org/10.1046/j.1365-2672.2003.02097.x
  40. Willcox, J. K., Catignani, G. L. and Lazarus, S. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43: 1-18. https://doi.org/10.1080/10408690390826437
  41. Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J. A. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  42. Zhao, L. J., Yang, X. N., Li, X. Y., Mu, W. and Liu, F. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa Strain BMP-11. Agr. Sci. China 10: 728-736. https://doi.org/10.1016/S1671-2927(11)60056-4
  43. Zhao, Y., Li, W., Zhou, Z., Wang, L., Pan, Y. and Zhao, L. 2005. Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. Eur. J. Soil Biol. 41: 21-29. https://doi.org/10.1016/j.ejsobi.2005.03.002