References
- Aerts, R.J., T.N. Barry, and W.C. McNabb. 1999. Polyphenols and agriculture: Beneficial effects of proanthocyanidins in forages. Agr. Ecosyst. Environ. 75:1-12. https://doi.org/10.1016/S0167-8809(99)00062-6
- Akazawa, T. and K. Wada. 1961. Analytical study of ipomeamarone & chlorogenic acid alterations in sweet potato roots infected by Ceratocystis fimbriata. Plant Physiol. 36:139-144. https://doi.org/10.1104/pp.36.2.139
- Andersson, B.A., R.T. Holman, L. Lundgren, and G. Stenhagen. 1980. Capillary gas chromatograms of leaf volatiles. A possible aid to breeders for pest and disease resistance. J. Agric. Food Chem. 28:985-989. https://doi.org/10.1021/jf60231a018
- Astorg, P., S. Gradelet, R. Berges, and M. Suschetet. 1997. Dietary lycopene decreases the initiation of liver preneoplastic foci by diethylnitrosamine in the rat. Nutr. Cancer 29:60-68. https://doi.org/10.1080/01635589709514603
- Bagchi, D., M. Bagchi, S.J. Stohs, D.K. Das, S.D. Ray, C.A. Kuszynski, S.S. Joshi, and H.G. Pruess. 2000. Free radicals and grape seed proanthocyanidin extract: Importance in human healthand disease prevention. Toxicology 148:187-197. https://doi.org/10.1016/S0300-483X(00)00210-9
- Boulogne, I., P. Petit, H. Ozier-Lafontaine, L. Desfontaines, and G. Loranger-Merciris. 2012. Insecticidal and antifungal chemicals produced by plants: a review. Environ. Chem. Lett. 10:325-347. https://doi.org/10.1007/s10311-012-0359-1
- Brown, P.D., J.G. Tokuhisa, M. Reichelt, and J. Gershenzon. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471-481. https://doi.org/10.1016/S0031-9422(02)00549-6
- Buttery, R.G., L.C. Ling, and D.M. Light. 1987. Tomato leaf volatile aroma components. J. Agric. Food Chem. 35:1039-1042. https://doi.org/10.1021/jf00078a043
- Chen, H., A.D. Jones, and G.A. Howe. 2006. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett. 580:2540-2546. https://doi.org/10.1016/j.febslet.2006.03.070
- Clack, R.S., J. Kuc, R.E. Henze, and F.W. Quackenbush. 1959. The nature and fungitoxicity of an amino acid addition product of chlorogenic acid. Phytopathology 49:594-597.
- D'Haeze, W. and M. Holsters. 2002. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79-105. https://doi.org/10.1093/glycob/12.6.79R
- Deavours, B.E. and R.A. Dixon. 2005. Metabolic engineering of isoflavonoid biosynthesis in Alfalfa. Plant Physiol. 138:2245-2259. https://doi.org/10.1104/pp.105.062539
- Degenhardt, J., J. Gershenzon, I.T. Baldwin, and A. Kessler. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotech. 14:169-176. https://doi.org/10.1016/S0958-1669(03)00025-9
- Di Mascio, P., M.E. Murphy, and H. Sies. 1991. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Amer. J. Clin. Nutr. 53:194-200.
- Dixon, R.A. 2001. Natural products and plant disease resistance. Nature 411:843-847. https://doi.org/10.1038/35081178
- Elliger, C.A., Y. Wong, B.G. Chan, and A.C. Waiss, Jr. 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7:753-758. https://doi.org/10.1007/BF00990307
- Farah, A. and C.M. Donangelo. 2006. Phenolic compounds in coffee. Braz. J. Plant Physiol. 18:23-36.
- Fontaine, T.D., G.W. Irving, R. Ma, J.B. Poole, and S.P. Doolittle. 1948. Isolation and partial characterization of crystalline tomatine, an antibiotic agent from the tomato plant. Arch. Biochem. 18:467-475.
- Fraser, P.D., M.R. Truesdale, C.R. Bird, W. Schuch, and P.M. Bramley. 1994. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 105:405-413.
- French, C.J. and G.H. Neil Towers. 1992. Inhibition of infectivity of potato virus X by flavonoids. Phytochemistry 31:3017-3020. https://doi.org/10.1016/0031-9422(92)83438-5
- Friedman, M. and C.E. Levin. 1998. Dehydrotomatine content in tomatoes. J. Agric. Food Chem. 46:4571-4576. https://doi.org/10.1021/jf9804589
- Frydman, A., O. Weisshaus, M. Bar-Peled, D.V. Huhman, L.W. Sumner, F.R. Marin, E. Lewinsohn, R. Fluhr, J. Gressel, and Y. Eyal. 2004. Citrus fruit bitter flavors: Isolation and functional characterization of the gene Cm1,2 RhaT encoding a 1, 2 rhamnosyl transferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 40:88-100. https://doi.org/10.1111/j.1365-313X.2004.02193.x
-
Fuhrman, B., A. Elis, and M. Aviram. 1997. Hypocholesterolemic effect of lycopene and
$\beta$ -carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem. Bioph. Res. Commun. 233:658-662. https://doi.org/10.1006/bbrc.1997.6520 - Gibson, R.W. 1971. Glandular hairs providing resistance to aphids in certain wild potato species. Ann. Appl. Biol. 68:113-119. https://doi.org/10.1111/j.1744-7348.1971.tb06448.x
- Gidley, M. 2004. Naturally functional foods - Challenges and opportunities. Asia Pac. J. Clin. Nutr. 13:S31.
- Harrison, H.F., J.K. Peterson, M.E. Snook, J.R. Bohac, and D.M. Jackson. 2003. Quantity and potential biological activity of caffeic acid in sweet potato (Ipomoea batatas (L.) Lam.) storage root periderm. J. Agric. Food Chem. 51:2943-2948. https://doi.org/10.1021/jf0211229
- Isleten, M. and Y. Karagul-Yuceer. 2008. Effects of functional dairy based proteins on nonfat yogurt quality. J. Food Quality 31:265-280. https://doi.org/10.1111/j.1745-4557.2008.00199.x
- Jimenez-Escrig, A., I. Jimenez-Jimenez, C. Sanchez-Moreno, and F. Saura-Calixto. 2000. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picryl-hydrazyl. J. Sci. Food Agric. 80:1686-1690. https://doi.org/10.1002/1097-0010(20000901)80:11<1686::AID-JSFA694>3.0.CO;2-Y
- Johnson, G. and L.A. Schaal. 1957. Chlorogenic acid and other orthodihydricphenolsin scab-resistant Russet Burbank and scabsusceptible Triumph potato tubers of different maturities. Phytopathology 47:253-255.
- Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.P. Rauha, K. Pihlaja, T.S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962. https://doi.org/10.1021/jf990146l
- Kim, D.S., H. Na, J.H. Song, Y. Kwack, S.K. Kim, and C. Chun. 2012. Antimicrobial activity of thinned strawberry fruits at different maturation stages. Kor. J. Hort. Sci. Technol. 30:769-775. https://doi.org/10.7235/hort.2012.12199
- Kim, D.S., H. Na, Y. Kwack, S.K. Kim, J.W. Heo, and C. Chun. 2013. Composition of secondary metabolites in various parts of 'Seolhyang' strawberry plants. Kor. J. Hort. Sci. Technol. 31:224-230.
-
Kozukue, N. and M. Friedman. 2003. Tomatine, chlorophyll,
$\beta$ ‐carotene and lycopene content in tomatoes during growth and maturation. J. Sci. Food Agric. 83:195-200. https://doi.org/10.1002/jsfa.1292 - Lenucci, M.S., D. Cadinu, M. Taurino, G. Piro, and G. Dalessandro. 2006. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 54:2606-2613. https://doi.org/10.1021/jf052920c
- Manach, C., A. Scalbert, C. Morand, C. Remesy, and L. Jimenez. 2004. Polyphenols: Food sources and bioavailability. Amer. J. Clin. Nutr. 79:727-747.
- Merz-Demlow, B.E., A.M. Duncan, K.E. Wangen, X. Xu, T.P. Carr, W.R. Phipps, and M.S. Kurzer. 2000. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Amer. J Clin. Nutr. 71:1462-1469.
- Moco, S., E. Capanoglu, Y. Tikunov, R.J. Bino, D. Boyacioglu, R.D. Hall, J. Vernoort, and R.C.H. De vos. 2007. Tissue specialization at the metabolite level is perceivedduring the development of tomato fruit. J. Exp. Bot. 58:4131-4146. https://doi.org/10.1093/jxb/erm271
- Morrissey, J.P. and A.E. Osbourn. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev. 63:708-724.
- Nuutila, A.M., K. Kammiovirta, and K.M. Oksman-Caldentey. 2002. Comparison of methods for the hydrolysis of flavonoidsand phenolic acids from onion and spinach for HPLC analysis. Food Chem. 76:519-525. https://doi.org/10.1016/S0308-8146(01)00305-3
- Oldroyd, G.E.D. 2001. Dissecting symbiosis: Developments in Nod factor signal transduction. Ann. Bot. 87:709-718. https://doi.org/10.1006/anbo.2001.1410
- Pichersky, E. and D.R. Gang. 2000. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 5:439-445. https://doi.org/10.1016/S1360-1385(00)01741-6
- Rao, A.V. and S. Agarwal. 1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 19:305-323. https://doi.org/10.1016/S0271-5317(98)00193-6
- Rauha, J.P., S. Remes, M. Heinonen, A. Hopia, M. Kahkonen, T. Kujala, K. Pihlaja, H. Vuorela, and P. Vuorela. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Intl. J. Food Microbial. 56:3-12. https://doi.org/10.1016/S0168-1605(00)00218-X
- Relic, B., X. Perret, M. Estrada-Garcia, J. Kopcinska, W. Golinowski, H.B. Krishnan, S.G. Pueppke, and W.J. Broughton. 1994. Nod factors of Rhizobium are a key to the legume door. Mol. Microbiol. 13:171-178. https://doi.org/10.1111/j.1365-2958.1994.tb00412.x
- Rohloff, J. and A.M. Bones. 2005. Volatile profiling of Arabidopsis thaliana - putative olfactory compounds in plant communication. Phytochemistry 66:1941-1955. https://doi.org/10.1016/j.phytochem.2005.06.021
- Ronen, G., M. Cohen, D. Zamir, and J. Hirschberg. 1999. Regulation of carotenoid biosynthesis during tomato fruit development:Expression of the gene for lycopene epsilon-cyclase is downregulated during ripening and is elevated in the mutant Delta. Plant J. 17:341-351. https://doi.org/10.1046/j.1365-313X.1999.00381.x
-
Sadler, G., J. Davis, and D. Dezman. 1990. Rapid extraction of lycopene and
$\beta$ ‐carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 55:1460-1461. https://doi.org/10.1111/j.1365-2621.1990.tb03958.x -
Sandrock, R.W. and H.D. Van Etten. 1998. Fungal sensitivity to andenzymatic degradation of the phytoanticipin
$\alpha$ -tomatine. Phytopathology 88:137-143. https://doi.org/10.1094/PHYTO.1998.88.2.137 - van Schie, C.C.N., M.A. van Haring, and R.C. Schuurink. 2007. Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol. 64:251-263. https://doi.org/10.1007/s11103-007-9149-8
- Setchell, K.D.R. and A. Cassidy. 1999. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 129:758-767.
- Slimestad, R. and M. Verheul. 2009. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 89:1255-1270. https://doi.org/10.1002/jsfa.3605
- Stamp, N.E. and Y. Yang. 1996. Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088-1102. https://doi.org/10.2307/2265578
- Todd, G.W., A. Getahun, and D.E. Cress. 1971. Resistance in barley to the greenbug, Schizaphis graminum. 1. Toxicity of phenolic and related compounds and related substances. Ann. Entomol. Soc. Amer. 64:718-722. https://doi.org/10.1093/aesa/64.3.718
- Urbasch, I. 1981. Antimycotic activity, volatile metabolites from the leaves of tomato plants. Naturwissenschaften 68:204-205. https://doi.org/10.1007/BF01047204
- Uritani, I. and T. Akazawa. 1955. Antibiotic effect on Ceratostomella fimbriata of ipomeamarone, an abnormal metabolite in black rot of sweetpotato. Science 121:216-217. https://doi.org/10.1126/science.121.3137.216
- Verdonk, J.C., C.H. Ric de Vos, H.A. Verhoeven, M.A. Haring, A.J. van Tunen, and R.C. Schuurink. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997-1008. https://doi.org/10.1016/S0031-9422(02)00707-0
- Verpoorte, R. and J. Memelink. 2002. Engineering secondary metabolite production in plants. Curr. Opin. Biotech. 13:181-187. https://doi.org/10.1016/S0958-1669(02)00308-7
- Walker, J.R.L. 1962. Phenolic acids in 'cloud' and normal tomato fruit wall tissue. J. Sci. Food Agric. 13:363-367. https://doi.org/10.1002/jsfa.2740130703
- Wardale, D.A. 1973. Effect of phenolic compounds in Lycopersicon esculentum on the synthesis of ethylene. Phytochemistry 12:1523-1530. https://doi.org/10.1016/0031-9422(73)80361-9
- Widmer, T.L. and N. Laurent. 2006. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur. J. Plant Pathol.115:377-388. https://doi.org/10.1007/s10658-006-9024-5
- Zhang, L.X., R.V. Cooney, and J.S. Bertram. 1991. Carotenoids enhance gap junctional communication and inhibitlipid peroxidation in C3H/10T1/2 cells: Relationship to their cancer chemopreventive action. Carcinogenesis 12:2109-2114. https://doi.org/10.1093/carcin/12.11.2109
Cited by
- Genotypic variation in carotenoid, ascorbic acid, total phenolic, and flavonoid contents, and antioxidant activity in selected tomato breeding lines vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-0144-3
- Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts vol.35, pp.2, 2014, https://doi.org/10.5423/ppj.oa.07.2018.0132
- Tomato’s Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin vol.4, pp.21, 2019, https://doi.org/10.1021/acsomega.9b01462
- Controlling Alternaria cerealis MT808477 Tomato Phytopathogen by Trichoderma harzianum and Tracking the Plant Physiological Changes vol.10, pp.9, 2014, https://doi.org/10.3390/plants10091846