• Title/Summary/Keyword: Toeplitz operator

Search Result 53, Processing Time 0.028 seconds

TOEPLITZ OPERATORS ON HARDY AND BERGMAN SPACES OVER BOUNDED DOMAINS IN THE PLANE

  • Chung, Young-Bok;Na, Heui-Geong
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • In this paper, we show that algebraic properties of Toeplitz operators on both Bergman spaces and Hardy spaces on the unit disc essentially generalizes on arbitrary bounded domains in the plane. In particular, we obtain results for the uniqueness property and commuting problems of the Toeplitz operators on the Hardy and the Bergman spaces associated to bounded domains.

A NOTE ON k-HYPERREFLEXIVITY OF TOEPLITZ-HARMONIC SUBSPACES

  • Budzynski, Piotr;Piwowarczyk, Kamila;Ptak, Marek
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1727-1733
    • /
    • 2014
  • The 2-hyperreflexivity of Toeplitz-harmonic type subspace generated by an isometry or a quasinormal operator is shown. The k-hyperreflexivity of the tensor product $\mathcal{S}{\otimes}\mathcal{V}$ of a k-hyperreflexive decom-posable subspace $\mathcal{S}$ and an abelian von Neumann algebra $\mathcal{V}$ is established.

ORTHONORMAL BASIS FOR THE BERGMAN SPACE

  • Chung, Young-Bok;Na, Heui-Geong
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.777-786
    • /
    • 2014
  • We construct an orthonormal basis for the Bergman space associated to a simply connected domain. We use the or-thonormal basis for the Hardy space consisting of the Szegő kernel and the Riemann mapping function and rewrite their area integrals in terms of arc length integrals using the complex Green's identity. And we make a note about the matrix of a Toeplitz operator with respect to the orthonormal basis constructed in the paper.

NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED QUESTIONS

  • Ramiz Tapdigoglu;Najwa Altwaijry;Mubariz Garayev
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2023
  • The Berezin symbol à of an operator A on the reproducing kernel Hilbert space 𝓗 (Ω) over some set Ω with the reproducing kernel kλ is defined by $${\tilde{A}}(\lambda)=\,\;{\lambda}{\in}{\Omega}$$. The Berezin number of an operator A is defined by $$ber(A):=\sup_{{\lambda}{\in}{\Omega}}{\mid}{\tilde{A}}({\lambda}){\mid}$$. We study some problems of operator theory by using this bounded function Ã, including estimates for Berezin numbers of some operators, including truncated Toeplitz operators. We also prove an operator analog of some Young inequality and use it in proving of some inequalities for Berezin number of operators including the inequality ber (AB) ≤ ber (A) ber (B), for some operators A and B on 𝓗 (Ω). Moreover, we give in terms of the Berezin number a necessary condition for hyponormality of some operators.

THE HYPONORMAL TOEPLITZ OPERATORS ON THE VECTOR VALUED BERGMAN SPACE

  • Lu, Yufeng;Cui, Puyu;Shi, Yanyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.237-252
    • /
    • 2014
  • In this paper, we give a necessary and sufficient condition for the hyponormality of the block Toeplitz operators $T_{\Phi}$, where ${\Phi}$ = $F+G^*$, F(z), G(z) are some matrix valued polynomials on the vector valued Bergman space $L^2_a(\mathbb{D},\mathbb{C}^n)$. We also show some necessary conditions for the hyponormality of $T_{F+G^*}$ with $F+G^*{\in}h^{\infty}{\otimes}M_{n{\times}n}$ on $L^2_a(\mathbb{D},\mathbb{C}^n)$.

THE ATOMIC DECOMPOSITION OF HARMONIC BERGMAN FUNCTIONS, DUALITIES AND TOEPLITZ OPERATORS

  • Lee, Young-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.263-279
    • /
    • 2009
  • On the setting of the unit ball of ${\mathbb{R}}^n$, we consider a Banach space of harmonic functions motivated by the atomic decomposition in the sense of Coifman and Rochberg [5]. First we identify its dual (resp. predual) space with certain harmonic function space of (resp. vanishing) logarithmic growth. Then we describe these spaces in terms of boundedness and compactness of certain Toeplitz operators.

ON 2-HYPONORMAL TOEPLITZ OPERATORS WITH FINITE RANK SELF-COMMUTATORS

  • Kim, An-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.585-590
    • /
    • 2016
  • Suppose $T_{\varphi}$ is a 2-hyponormal Toeplitz operator whose self-commutator has rank $n{\geq}1$. If $H_{\bar{\varphi}}(ker[T^*_{\varphi},T_{\varphi}])$ contains a vector $e_n$ in a canonical orthonormal basis $\{e_k\}_{k{\in}Z_+}$ of $H^2({\mathbb{T}})$, then ${\varphi}$ should be an analytic function of the form ${\varphi}=qh$, where q is a finite Blaschke product of degree at most n and h is an outer function.

SOME PROPERTIES OF TOEPLITZ OPERATORS WITH SYMBOL μ

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.471-479
    • /
    • 2010
  • For a complex regular Borel measure ${\mu}$ on ${\Omega}$ which is a subset of ${\mathbb{C}}^k$, where k is a positive integer we define the Toeplitz operator $T_{\mu}$ on a reproducing analytic space which comtains polynomials. Using every symmetric polynomial is a polynomial of elementary polynomials, we show that if $T_{\mu}$ has finite rank then ${\mu}$ is a finite linear combination of point masses.

GENERALIZED 𝛼-KÖTHE TOEPLITZ DUALS OF CERTAIN DIFFERENCE SEQUENCE SPACES

  • Sandeep Gupta;Ritu;Manoj Kumar
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.219-228
    • /
    • 2024
  • In this paper, we compute the generalized 𝛼-Köthe Toeplitz duals of the X-valued (Banach space) difference sequence spaces E(X, ∆), E(X, ∆𝜐) and obtain a generalization of the existing results for 𝛼-duals of the classical difference sequence spaces E(∆) and E(∆𝜐) of scalars, E ∈ {ℓ, c, c0}. Apart from this, we compute the generalized 𝛼-Köthe Toeplitz duals for E(X, ∆r) r ≥ 0 integer and observe that the results agree with corresponding results for scalar cases.