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THE ATOMIC DECOMPOSITION OF HARMONIC
BERGMAN FUNCTIONS, DUALITIES AND

TOEPLITZ OPERATORS

Young Joo Lee

Abstract. On the setting of the unit ball of Rn, we consider a Banach
space of harmonic functions motivated by the atomic decomposition in
the sense of Coifman and Rochberg [5]. First we identify its dual (resp.
predual) space with certain harmonic function space of (resp. vanishing)
logarithmic growth. Then we describe these spaces in terms of bounded-
ness and compactness of certain Toeplitz operators.

1. Introduction

Let B be the unit ball of Rn (n ≥ 2) and V denote the Lebesgue volume
measure on B. Given 1 ≤ p <∞, the harmonic Bergman space bp is the space
of all complex-valued harmonic functions f on B such that

‖f‖p =
{∫

B

|f |p dV
}1/p

<∞.

As is well-known, the harmonic Bergman space bp is a closed subspace of the
Lebesgue space Lp = Lp(B, V ). Since each point evaluation is a bounded linear
functional on b2 for each x ∈ B, there exists a unique functionR(x, ·) ∈ b2 which
has the following reproducing property:

(1) f(x) =
∫

B

f(y)R(x, y) dV (y)

for all f ∈ b2. The kernel R(x, y) is the well-known harmonic Bergman kernel
whose its explicit formula is given by

R(x, y) =
(n− 4)|x|4|y|4 + (8x · y − 2n− 4)|x|2|y|2 + n

nV (B)(1− 2x · y + |x|2|y|2)1+ n
2

, y ∈ B,
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where x · y denotes the usual inner product for points x, y ∈ Rn. Thus, the
kernel R(x, y) is real and the complex conjugate in the integral of (1) can be
removed. It is known that the reproducing property (1) still remains valid for
every functions in b1. See Chapter 8 of [1] for details and related facts.

In [5], Coifman and Rochberg proved that every function in b1 admits an
atomic decomposition based on the weighted harmonic Bergman kernels. To be
more precise, let us introduce some notation. Given α ≥ −1, we let Rα(x, y) be
the reproducing kernel for the weighted harmonic Bergman space with respect
to the weight (1 − |x|)α. So, R0 = R is the usual harmonic Bergman kernel
mentioned above. For the explicit formula of Rα and related facts, see [14] or
Chapter 3 of [5].

The result [5, Theorem 3] of Coifman and Rochberg implies that every func-
tion in b1 admits the following atomic decomposition: Given an integer m > 0,
there exist a sequence {aj} in B and a constant C such that every f ∈ b1 can
be represented as

(2) f(x) =
∞∑

j=1

λjRm(x, aj)(1− |aj |)m, x ∈ B

for some sequence {λj} ∈ `1 with
∞∑

j=1

|λj | ≤ C||f ||1.

Here and in what follows, the notation `p denotes the usual p-summable se-
quence space. On the other hand, using the similar argument as in Proposi-
tion 8 of [11], together with Lemma 3.2 of [5], we see that for each m > 0, there
exist constants C1, C2 > 0 such that

C1

(1− |x|)m
≤ ||Rm(·, x)||1 ≤ C2

(1− |x|)m

for all x ∈ B. Hence the decomposition (2) yields

f(x) =
∞∑

j=1

λj
Rm(x, aj)
||Rm(·, aj)||1 , x ∈ B

for some sequence {λj} ∈ `1.
Recalling R0 = R, one may naturally consider functions in b1 which admit

the following atomic decomposition as the limiting case of m = 0:

(3) f(x) =
∞∑

j=1

λj
R(x, aj)
||R(·, aj)||1 , x ∈ B

for some {aj} in B and {λj} ∈ `1.
Motivated by such atomic decomposition, we consider the space of harmonic

Bergman integrals of certain complex Borel measures. To be more precise, we
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put Rx(y) = R(x, y) for convenience and let M denote the space of all complex
Borel measures µ on B for which∫

B

||Rx||1 d|µ|(x) <∞,

where |µ| is the total variation of µ. We let Y be the space of all harmonic
functions f on B of the form

f(x) =
∫

B

R(x, y) dµ(y)

for some µ ∈ M and a norm ||f ||∗ of f ∈ Y is defined by the quotient norm

||f ||∗ = inf
∫

B

||Rx||1 d|µ|(x),

where the infimum is taken over all µ ∈ M which represent f . Then, it is easy
to check that Y equipped with the norm || ||∗ is a Banach space. Also, one can
see that ||f ||1 ≤ ||f ||∗ for f ∈ Y by an application of Fubini’s theorem. Hence
Y ⊂ b1. Moreover, since each Rx is represented by the unit point mass δx at
x, we see ||Rx||∗ ≤ ||Rx||1. It follows that ||Rx||1 = ||Rx||∗ for all x ∈ B.

In this paper, we first identify the dual space and pre-dual space of Y with
some natural function spaces. Then we describe those dual and pre-dual spaces
in terms of the boundedness and compactness of certain Toeplitz operators
acting on the harmonic Bergman space b2. To introduce two function spaces,
we note ||Rx||1 > 0 for all x ∈ B; see Section 2. Put η(x) = ||Rx||−1

1 for
notational simplicity. Let X denote the space of all harmonic functions f on
B such that

||f ||∗∗ = sup
x∈B

|f(x)|η(x) <∞.

In addition, if f ∈ X satisfies the following boundary vanishing condition

lim
|x|→1

|f(x)|η(x) = 0,

then we say f ∈ X0. By a standard argument, one can verify that the space X
equipped with the norm || ||∗∗ is a Banach space and X0 is a closed subspace
of X.

In this paper, we first establish the dualities X∗
0 = Y and Y ∗ = X using the

standard integral pairing. These results resemble known dualities between the
harmonic Bergman space b1, the harmonic Bloch space and the harmonic little
Bloch space; see [5] or [10] for details. As a consequence of these dualities,
we show that Y is in fact the space of all harmonic functions which admit the
atomic decomposition such as (3); see Proposition 8. Next, we characterize
the spaces X and X0 in terms of the boundedness and compactness of certain
Toeplitz operators on b2. Also, we prove the corresponding result for Schatten
p-class Toeplitz operators. See Section 4.

The holomorphic versions of these characterizations have been obtained in
[7], [8] on the unit disk and in [3] on the unit ball of Cn. Our results show
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that the known characterizations on the holomorphic Bergman spaces continue
to hold on the harmonic cases. While main scheme of our proofs are adapted
from [3], we need to establish corresponding theories for the harmonic Bergman
spaces.

2. The space Y

In this section, we investigate some useful properties of the space Y . We
first have the following growth estimate of ||Rx||1. By Lemma 3.1 of [2], we see
that there exists a positive constant C, depending only on n, such that

(4) C−1 ≤ ||Rx||1
{

1 + log
1

1− |x|
}−1

≤ C

for all x ∈ B. It follows that

(5)
∫

B

||Rx||1 dV (x) <∞.

Let h∞ be the space of all bounded harmonic functions on B. Also, let A
denote the space of all functions harmonic on B and continuous on B̄. Given
f ∈ h∞, we have by the reproducing property (1)

f(x) =
∫

B

R(x, y) dµ(y), x ∈ B,

where µ = fdV . On the other hand, by (5), we see∫

B

||Rx||1 d|µ|(x) ≤ ||f ||∞
∫

B

||Rx||1 dV (x) <∞.

Thus we have h∞ ⊂ Y . Moreover, we will show that A is actually dense in Y .
To prove this, we recall that the harmonic Bergman kernel can be expressed
in terms of the so-called zonal harmonics. To be more precise, let S = ∂B.
A spherical harmonic of degree m is the restriction to S of a harmonic ho-
mogeneous polynomial on Rn of degree m. We write Hm(S) for the space of
all spherical harmonics of degree m. It is known that each Hm(S) is a finite
dimensional Hilbert space with respect to the usual inner product in L2(S, dσ),
where σ is the normalized surface-area measure on S. For each ζ ∈ S, the
linear functional p 7→ p(ζ) on Hm(S) is uniquely represented by a harmonic
m-homogeneous polynomial Zm( ·, ζ) called the zonal harmonic of degree m at
pole ζ. Extending Zm to a function on Rn × Rn by setting

Zm(x, y) = |x|m|y|mZm

(
x

|x| ,
y

|y|
)
.

It is known that Zm( ·, y) is a harmonic m-homogeneous polynomial on Rn for
each y ∈ B. Also, letting hm be the dimension of Hm(S), we have Zm(ζ, η) =
hm for all ζ, η ∈ S and

(6)
hm

mn−2
→ 2

(n− 2)!
as m→∞.
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See Chapter 5 of [1] for details and related facts. It turns out that the harmonic
Bergman kernel can be expressed in terms of the zonal harmonics as follows:

(7) R(x, y) =
1

nV (B)

∞∑
m=0

(n+ 2m)Zm(x, y), x, y ∈ B.

Moreover, the series converges absolutely and uniformly on K × B for every
compact subsets K ⊂ B. See Theorem 8.9 of [1].

The following proposition shows that A is a dense subset of Y .

Proposition 1. The space A is dense in Y .

Proof. Let f ∈ Y and assume

f(x) =
∫

B

R(x, y) dµ(y), x ∈ B

for some µ ∈ M. For 0 < r < 1, let ψr be the function represented by the
restriction of µ to rB̄. Thus

ψr(x) =
∫

rB̄

R(x, y) dµ(y), x ∈ B.

We first show that each ψr belongs to A. Fix r ∈ (0, 1). Note that

|Zm(x, y)| ≤ |x|m|y|mZm

(
x

|x| ,
y

|y|
)
≤ rmhm

for all |x| ≤ 1 and |y| ≤ r. Hence, for each N ≥ 1, we have

(8)

∣∣∣∣∣ψr(x)− 1
nV (B)

N∑
m=0

(n+ 2m)
∫

rB̄

Zm(x, y) dµ(y)

∣∣∣∣∣

≤ 1
nV (B)

∞∑

m=N+1

(n+ 2m)
∫

rB̄

|Zm(x, y)| d|µ|(y)

≤ |µ|(B)
nV (B)

∞∑

m=N+1

(n+ 2m)rmhm, x ∈ B̄.

On the other hand, using (6), we see that the series
∑∞

m=1(n+ 2m)rmhm con-
verges. It follows from (8) that ψr is a uniform limit of harmonic polynomials
on B̄ and hence ψr ∈ A. We now show that ψr converges to f in Y as r → 1.
For each r, we note

f(x)− ψr(x) =
∫

r<|y|<1

R(x, y) dµ(y), x ∈ B

and therefore

||f − ψr||∗ ≤
∫

r<|x|<1

||Rx||1 d|µ|(x) → 0

as r → 1. This completes the proof. ¤
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Next, we show that functions in A can be approximated in Y by discrete
sums based on the harmonic Bergman kernels. Before proceeding, we need a
couple of two lemmas. The first one shows that the unit ball can be decomposed
into smaller balls in a cannonical way. Since the proof is a trivial modification
of that of Corollary 1 of [7], we omit the details.

In the following, we write the notation B(a, r) for the usual Euclidean ball
centered at a ∈ B with radius r > 0. Also, dist(E,F ) denotes the Euclidean
distance between two sets E and F .

Lemma 2. Given β > 0, there exists a family of balls {Bk} = {Bk(ak, rk)} in
B such that

(a) 2rk ≤ min{β, dist(Bk, S)}, k = 1, 2, . . ..
(b) V

(
B \ ∪∞k=1Bk

)
= 0.

(c) Bj ∩Bk = ∅ whenever j 6= k.

We also need the following characterization of harmonic functions on B in
terms of the volume version of the mean value property.

Lemma 3. Let f ∈ L1. Then f is harmonic on B if and only if

f(a) =
1

V (B(a, r))

∫

B(a,r)

f dV

whenever B(a, r) ⊂ B.

Proof. See (1.3) and Theorem 1.21 of [1]. ¤

We are now ready to prove that functions in A can be approximated in Y
by the discrete sums involving L1-normalized harmonic Bergman kernels. The
following shows the space Y can be viewed as the “completion” of the set of
functions in b1 which admit the atomic decomposition as in (3). The term
“completion” will be justified in Proposition 8.

Theorem 4. For f ∈ A and ε > 0, there exist sequences {λj} in C and {aj}
in B such that

∞∑

j=1

|λj | <∞ and

∣∣∣∣∣∣

∣∣∣∣∣∣
f −

∞∑

j=1

λj

Raj

||Raj ||1

∣∣∣∣∣∣

∣∣∣∣∣∣
∗

< ε.

Proof. By (5), we note

N :=
∫

B

||Rx||1 dV (x) <∞.

By the uniform continuity of f , there exists δ > 0 such that x1, x2 ∈ B and
|x1 − x2| < δ implies |f(x1) − f(x2)| < ε/N . With this δ in place of β in
Lemma 2, choose a family {Bj} = {Bj(aj , rj)} of Euclidean balls satisfying
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three conditions in Lemma 2. Using the reproducing property (1) and condi-
tions (b), (c) in Lemma 2, one obtains

f(x) =
∞∑

j=1

∫

Bj

f(y)Rx(y) dV (y), x ∈ B.

Note Rx(y) = Ry(x) for every x, y ∈ B. It follows from Lemma 3 that

f(x) =
∞∑

j=1

∫

Bj

[f(y)− f(aj)]Rx(y) dV (y) +
∞∑

j=1

f(aj)
∫

Bj

Rx(y) dV (y)

=
∞∑

j=1

∫

Bj

[f(y)− f(aj)]Rx(y) dV (y) +
∞∑

j=1

λj

Raj
(x)

||Raj
||1 ,

(9)

where λj = f(aj)||Raj ||1V (rjB). On the other hand, by condition (a) in
Lemma 2, one can check that

(10)
1

1− |aj | ≤
4

3(1− |y|)
for all y ∈ Bj and j = 1, 2, . . .. Also, by (4), we see

||Raj ||1 ≤ C

(
1 + log

1
1− |aj |

)
, j = 1, 2, . . .

for some constant C independent on j. It follows from (10) that
∞∑

j=1

|λj | ≤ C||f ||∞
∞∑

j=1

V (rjB)

(
1 + log

1
1− |aj |

)

≤ C||f ||∞
∞∑

j=1

∫

Bj

(
1 + log

4
3

+ log
1

1− |y|

)
dV (y)

= C||f ||∞
∫

B

(
1 + log

4
3

+ log
1

1− |y|

)
dV (y)

<∞,

which gives the first part of the results. To prove the second part, we put
dµ =

∑∞
j=1[f−f(aj)]χBj dV , where χK is the characteristic function ofK ⊂ B.

Then, we have by (9)

f(x)−
∞∑

j=1

λj

Raj (x)
||Raj ||1

=
∫

B

R(x, y) dµ(y), x ∈ B.

By condition (a) in Lemma 2, we note that |y − aj | < δ for y ∈ Bj . It follows
that ∣∣∣∣∣∣

∣∣∣∣∣∣
f −

∞∑

j=1

λj

Raj

||Raj ||1

∣∣∣∣∣∣

∣∣∣∣∣∣
∗

≤
∞∑

j=1

∫

Bj

||Ry||1|f(y)− f(aj)| dV (y)
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≤ ε

N

∫

B

||Ry||1 dV (y)

= ε,

so we have the second part of the results. The proof is complete. ¤
Combining Proposition 1 with Theorem 4, we obtain the following corollary

which will be used in the proof of the duality Y ∗ = X.

Corollary 5. The set of finite sums of the form
∑N

j=1 λjRaj is dense in Y .

3. Dualities

In this section we prove that the dual of Y is X and its predual is X0 under
the standard integral pairing. The basic idea comes from [7] or [3] where the
holomorphic version of these dualities have been established.

For r ∈ (0, 1) and a function f on B, we let fr denote the r-dilated function
defined by fr(x) = f(rx) for x ∈ B. Note that each dilation of a harmonic
function is also harmonic on B. Moreover, we can see that for f ∈ X, f ∈ X0

if and only if ||f − fr||∗∗ → 0 as r → 1 using the same argument as in the
proof of Proposition 4 of [6, Section 2.6] where the similar characterization is
proved for the well known holomorphic little Bloch functions of the unit disk.
Since η(x) → 0 as |x| → 1 by (4), we note A ⊂ X0. In particular, A is densely
contained in X0. This fact will be used in the proof of dualities below.

Theorem 6. Every f ∈ Y induces Λf ∈ X∗
0 defined by

Λfh =
∫

B

hf dV, h ∈ A

and, conversely, to each Λ ∈ X∗
0 there corresponds a unique function f ∈ Y

such that Λ = Λf . Moreover, the operator norm of Λf is equal to ||f ||∗.
Proof. Let f ∈ Y and suppose f is represented by µ ∈ M. Recall that Rx(y) =
Ry(x) for all x, y ∈ B. Applying Fubini’s theorem and using (1), one obtains

Λf (h) =
∫

B

∫

B

h(x)Ry(x) dV (x) dµ(y) =
∫

B

h(y) dµ(y)

and hence

|Λf (h)| ≤
∫

B

|h(y)| d|µ|(y) ≤ ||h||∗∗
∫

B

||Ry||1 d|µ|(y)

for every h ∈ A. This is true for all µ ∈ M which represent f . It follows that
|Λf (h)| ≤ ||h||∗∗||f ||∗ for all h ∈ A. Since A is dense in X0, each f ∈ Y induces
a bounded linear functional Λf ∈ X∗

0 with ||Λf || ≤ ||f ||∗.
Next assume that Λ ∈ X∗

0 . It suffices to show that there exists a unique
function f ∈ Y such that Λ = Λf on A. To do so, we first define a linear
operator Π : X0 → C0(B) by Πh = hη. Here C0(B) denotes the space of
all functions continuous on B and vanishing on S. Then Π is an isometry of
X0 into C0(B). By the Hahn-Banach extension theorem, Λ ◦ Π−1 extends to
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a bounded linear functional on C0(B). By the Riesz representation theorem,
there exists a complex Borel measure µ on B such that |µ|(B) = ||Λ ◦ Π−1||
and

Λ ◦Π−1(g) =
∫

B

g dµ, g ∈ C0(B).

In particular, if h ∈ A, using (1) and Fubini’s theorem, we see

Λ(h) = Λ ◦Π−1 ◦Π(h) =
∫

B

hη dµ =
∫

B

hf dV,

where
f(y) =

∫

B

Rx(y)η(x) dµ(x), y ∈ B.
Now, since Π is an isometry, we obtain∫

B

||Rx||1η(x) d|µ|(x) = |µ|(B) = ||Λ ◦Π−1|| = ||Λ||,

so that f ∈ Y and Λ = Λf on A. In addition, we have ||f ||∗ ≤ ||Λ|| = ||Λf ||.
To prove the uniqueness, suppose f ∈ Y induces a zero functional. Write

f(x) =
∞∑

m=0

pm(x), x ∈ B,

where each pm is a harmonic homogeneous polynomial of degree m (see, for
example, [1, Theorem 1.27]). Since two harmonic homogeneous polynomials
with different degree are orthogonal in L2, by applying the integral pairing
to each pm, we see that pm = 0 for all m and hence f = 0. The proof is
complete. ¤

Theorem 7. Every h ∈ X induces Φh ∈ Y ∗ defined by

Φh(f) =
∫

B

fh dV, f ∈ A

and, conversely, to each Φ ∈ Y ∗ there corresponds a unique function h ∈ X
such that Φ = Φh. Moreover, the operator norm of Φh is equal to ||h||∗∗.
Proof. Let h ∈ X and consider functions of the form f =

∑N
j=1 λjRaj . Note

X ⊂ b1 by (4). Since f ∈ Y is represented by dµ =
∑N

j=1 λjδaj , we have by (1)

Φh(f) =
N∑

j=1

λj

∫

B

hRaj dV =
∫

B

h dµ.

It follows that

|Φh(f)| ≤
∫

B

|h(w)| d|µ|(w) ≤ ||h||∗∗
∫

B

||Rw||1 d|µ|(w)

and hence |Φh(f)| ≤ ||h||∗∗||f ||∗. Since such functions f form a dense subset
of Y by Corollary 5, the above observation shows that every h ∈ X induces a
bounded linear functional Φh ∈ Y ∗ with ||Φh|| ≤ ||h||∗∗.
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Now assume Φ ∈ Y ∗ and define

h(x) = Φ(Rx), x ∈ B.
First, we will show h ∈ X. For x, y ∈ B, we note

|h(x)− h(y)| = |Φ(Rx −Rx)| ≤ ||Φ|| ||Rx −Ry||∗.
On the other hand, by Lemma 3, we have

Rx(a)−Ry(a)

=
1

V (B(0, r))

(∫

B(x,r)

Ra dV −
∫

B(y,r)

Ra dV

)

=
1

V (B(0, r))

(∫

B(x,r)\B(y,r)

Ra dV −
∫

B(y,r)\B(x,r)

Ra dV

)

for a ∈ B and for some r sufficiently small. It follows that

(11) ||Rx −Ry||∗ ≤ 1
V (B(0, r))

sup ||Ra||1V [B(x, r)4B(y, r)] ,

where the supremum is taken over all a ∈ B(x, r) ∪B(y, r) and 4 denotes the
symmetric set difference. From this, we can see that h is continuous on B.
Note that (11) implies the map x 7→ Rx is continuous from B into Y . Also,
note from (5) that

∫

B

|h| dV ≤ ||Φ||
∫

B

||Rx||∗ dV (x)

= ||Φ||
∫

B

||Rx||1 dV (x)

<∞,

where we use the fact that ||Rx||∗ = ||Rx||1 for all x ∈ B. Hence h ∈ L1. It
follows from Lemma 3 that

1
V (B(a, r))

∫

B(a,r)

h(x) dV (x) = Φ

(
1

V (B(a, r))

∫

B(a,r)

Rx(y) dV (x)

)

= Φ(Ra)

= h(a)

whenever B̄(a, r) ⊂ B. Therefore, by Lemma 3, we conclude that h is harmonic
on B. Recall that ||Rx||∗ = ||Rx||1 = 1/η(x) for x ∈ B. Hence

(12) |h(x)|η(x) = |Φ(Rx)|η(x) ≤ ||Φ|| ||Rx||∗η(x) = ||Φ|| <∞
for every x ∈ B, so h ∈ X. Finally we show that Φ = Φh on Y . To do
this, we only prove Φf = Φhf for functions f of the form f =

∑N
j=1 λjRaj by
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Corollary 5. By (1), one obtains

Φ(f) =
N∑

j=1

λjh(aj) =
N∑

j=1

λj

∫

B

Raj
h dV =

∫

B

fh dV = Φh(f).

Hence Φ = Φh and ||h||∗ ≤ ||Φ|| = ||Φh|| by (12). The uniqueness is easily seen
as in the proof of Theorem 6. The proof is complete. ¤

As a consequence of the duality Y ∗ = X, we now show that Y is in fact the
space of all harmonic functions which admit the atomic decomposition as in
(3). To show this, let us write Y ′ for the class of all such functions of the form
(3) and define a norm on Y ′ by

||f ||∗′ = inf
∞∑

j=1

|λj |,

where the infimum is taken over all possible decompositions (3) of f .

Proposition 8. Y ′ = Y and two norms are equivalent.

Proof. Clearly, we have Y ′ ⊂ Y and ||f ||∗ ≤ ||f ||∗′ for f ∈ Y ′. Now, let f ∈ Y .
Consider the set F ⊂ Y of all functions of the form

∑N
j=1 λjRaj . Let E denote

the convex set of all functions g ∈ F with ||g||∗′ ≤ ||f ||∗. We claim f ∈ Ē.
Suppose not. Then, by the Hahn-Banach theorem, f and Ē are separated by
some bounded linear functional on Y . In particular, by Theorem 7, there is
some h ∈ X such that

sup
a∈B

|Φh(Ra)|
||Ra||1 ||f ||∗ < |Φh(f)| ≤ ||Φh|| ||f ||∗ = ||h||∗∗||f ||∗.

On the other hand, by (1), we see that the leftmost side of the above is precisely
the same as ||h||∗∗||f ||∗. This is a contradiction and we have f ∈ Ē. Now, using
the same argument as in the proof of Proposition 7 of [3], we have ||f ||∗′ ≤ ||f ||∗.
The proof is complete. ¤

4. Toeplitz operators

In this section, we characterize the spaces X and X0 in terms of boundedness
and compactness of certain Toeplitz operators on b2. To begin with, we let
P be the Hilbert space orthogonal projection from L2 onto b2. Using the
reproducing formula (1), we see that the projection P has the following integral
representation:

Pf(x) =
∫

B

R(x, y)f(y) dV (y), x ∈ B

for functions f ∈ L2. Also, it turns out that the projection P extends to an
integral operator via the above integral representation taking L1 into the space
of harmonic functions.
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For a function u ∈ L1, the Toeplitz operator Tu with symbol u is defined by

Tuf = P (uf)

whenever uf ∈ L1. If u ∈ L∞, then Toeplitz operator Tu is bounded on b2 and

(13) ||Tu|| ≤ ||u||∞.
Here, the notation ||T || denotes the operator norm of a bounded operator T
on b2. For positive symbols, there are several characterizations of symbols for
associated Toeplitz operators to be bounded. See [12] on the ball and [4] on
general bounded smooth domains. One of them is in terms of the averaging
function of symbol. Given x ∈ B and 0 < r < 1, we let

Er(x) = {y ∈ B : |x− y| < r(1− |x|)}
denote the Euclidean ball centered at x with radius r(1− |x|). It is easy to see
that

(14) (1− r)(1− |x|) ≤ (1− |y|) ≤ (1 + r)(1− |x|)
for y ∈ Er(x). For f ∈ L1 and 0 < r < 1, the averaging function f̂r of f over
the ball Er(x) is defined on B by

f̂r(x) =
1

V (Er(x))

∫

Er(x)

f dV, x ∈ B.

It turns out that the boundedness of Toeplitz operators with positive symbol
can be characterized by the boundedness of the averaging function of its symbol
as shown in the following which will be used in the description of the space X.

Lemma 9. Let u ∈ L1 be positive. Then Tu is bounded on b2 if and only if ûr

is bounded on B for every (or some) 0 < r < 1. Moreover, for each r, ||Tu|| is
equivalent to the sup-norm of ûr.

Proof. See Theorem 6 of [12] or Theorem 3.9 of [4]. ¤

To describe the space X0, we need the corresponding characterization of
compact Toeplitz operators, together with the vanishing Berezin transform
characterization. For f ∈ L1, the Berezin transform f̃ of f is the function on
B defined by

f̃(x) =
1

||Rx||22

∫

B

u(y)|R(x, y)|2 dV (y), x ∈ B.

Lemma 10. Let u ∈ L1 be positive. Then the following statements are equiv-
alent.

(a) Tu is compact on b2.
(b) ûr(x) → 0 as |x| → 1 for every (or some) 0 < r < 1.
(c) ũ(x) → 0 as |x| → 1.

Proof. See Theorem 7 of [12] or Theorem 3.12 of [4]. ¤
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Since Er(x) is the Euclidean ball centered at x with radius r(1−|x|), we have
the following submean value type inequality whose the proof can be founded
in Lemma 5 of [13] for example.

Lemma 11. For 0 < p < ∞, there exists a constant C, depending only on n
and p, such that

|f(x)|p ≤ C

V (Er(x))

∫

Er(x)

|f |p dV, x ∈ B

for every r ∈ (0, 1) and f harmonic on B.

Now, we are ready to characterize the spaces X and X0 in terms of bound-
edness and compactness of Toeplitz operators, respectively.

Theorem 12. Let f ∈ b1. Then T|f |η is bounded on b2 if and only if f ∈ X.
Moreover, ||T|f |η|| is equivalent to ||f ||∗∗.
Proof. Assume f ∈ X. Then ||T|f |η|| ≤ ||fη||∞ = ||f ||∗∗ by definition of X and
(13). Now assume that T|f |η is bounded and show f ∈ X. By (4), there exist
`0 ∈ (0, 1) and a constant C > 0, depending only on n, such that

(15)
1
C

log
1

1− |a| ≤ ||Ra||1 ≤ C log
1

1− |a|
whenever |a| ≥ `0. Fix 0 < r < 1 and put ρ = max{ `0+r

1+r , r}. Note ρ > `0.
Using (14), we can see that if |x| ≥ ρ and y ∈ Er(x), then |y| ≥ `0. Also, note
that log 1

1−r ≤ log 1
1−|x| for |x| ≥ ρ. It follows from (14) and (15) that

||Ry||1 ≤ C log
1

1− |y|
≤ C

{
log

1
1− r

+ log
1

1− |x|
}

≤ 2C log
1

1− |x|
≤ 2C2||Rx||1

for every |x| ≥ ρ and y ∈ Er(x). Since η(x) = ||Rx||−1
1 , the above implies

η(x) ≤ 2C2 inf{η(y) : y ∈ Er(x)}
for all |x| ≥ ρ. It follows from Lemma 11 (with p = 1) that there exists another
constant C > 0, depending only on n and r, such that

|f(x)|η(x) ≤ C

V (E(x, r))

∫

E(x,r)

|f |η dV = C (̂|f |η)r(x)(16)

for |x| ≥ ρ. On the other hand, by Lemma 9, the averaging function of |f |η is
bounded and its sup-norm is equivalent to the operator norm of T|f |η. Hence
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we have

(17) sup
ρ≤|x|<1

|f(x)|η(x) ≤ C||T|f |η||

for some constant C depending only on n and r. On the other hand, by (4),
we have

sup
x∈B

η(x) <∞ and sup
|x|=ρ

||Rx||1 ≤ C

for some constant C depending only on n and r. It follows from the maximum
principle for harmonic functions and (17) that

sup
|x|≤ρ

|f(x)|η(x) ≤ C sup
|x|=ρ

|f(x)|

= C sup
|x|=ρ

|f(x)|η(x)||Rx||1

≤ C sup
|x|=ρ

|f(x)|η(x)

≤ C||T|f |η||
for some constant C depending only on n and r. Combining the above with
(17), we see that

||f ||∗∗ = sup
x∈B

|f(x)|η(x) ≤ C||T|f |η||

for some constant C depending only on n and r. Hence f ∈ X and ||T|f |η|| is
equivalent to ||f ||∗∗. The proof is complete. ¤

Next, we prove a corresponding result for the compactness. In the proof, we
use the following growth estimates for x ∈ B:

(18)
1
C1

≤ ||Rx||22(1− |x|)n ≤ C1

and

(19) |Rx(y)| ≤ C2

(1− |x||y|)n
, y ∈ B

for some positive constants C1, C2 depending only on n. See Proposition 4 of
[11] for example.

Theorem 13. Let f ∈ b1. Then T|f |η is compact on b2 if and only if f ∈ X0.

Proof. Let u = |ηf | for simplicity. First assume f ∈ X0. Since u(x) → 0
as |x| → 1, given ε > 0, there exists δ ∈ (0, 1) such that u(x) < ε whenever
δ < |x| < 1. By (18) and (19), we have for x ∈ B

ũ(x) =
1

||Rx||22

∫

B

u|Rx|2 dV

≤ C(1− |x|)n

∫

δB

u|Rx|2 dV +
1

||Rx||22

∫

B\δB

u|Rx|2 dV
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≤ C
||u||∞V (δB)

(1− δ)2n
(1− |x|)n +

ε

||Rx||22

∫

B

|Rx|2 dV
= C(1− |x|)n + ε

for some constants C independent of x. Since ε is arbitrary, this implies ũ(x) →
0 as |x| → 1. Hence Tu is compact on b2 by Lemma 10.

Conversely, assume Tu is compact on b2. By (16), one can see that for a
fixed r ∈ (0, 1) and x ∈ B near the boundary, u(x) ≤ C (̂|f |η)r(x) for some
constant C independent of x. Combining this with Lemma 10 again, we have
u(x) → 0 as |x| → 1. Hence f ∈ X0 and the proof is complete. ¤
Remark. The proofs of Theorems 12 and 13 show that in fact a little more
hold: For 0 < p < ∞ and f ∈ b1, T|fη|p is bounded (resp. compact) on b2 if
and only if f ∈ X (resp. X0).

Finally, we characterize functions f ∈ b1 for which the Toeplitz operators
T|fη| belong to Schatten p-class on b2. Before proceeding, we recall the notion
of Schatten class operators. For a compact operator T on a separable Hilbert
space H, it is known that there exist orthonormal sets {em} and {σm} in H
such that

Tx =
∑
m

λm〈x, em〉σm, x ∈ H,

where {λm} is the nth singular value of T and 〈 , 〉 denotes the inner product
on H. For 1 ≤ p < ∞, we define the Schatten p-class of H, denoted Sp(H),
to be the space of all compact operators T with singular value sequence {λm}
belonging to `p. Of course, we will take H = b2 in our applications below and,
in that case, we put Sp = Sp(b2).

We also need a characterization for Schatten p-class Toeplitz operators with
positive symbol. For the proof, see [12, Theorem 11] or [4, Theorem 3.13]. In
the following, the measure dλ is defined on B by dλ(x) = (1− |x|)−ndV (x).

Lemma 14. Let 1 ≤ p <∞ and u ∈ L1 be positive. Then Tu ∈ Sp if and only
if ûr ∈ Lp(B, dλ) for every (or some) 0 < r < 1.

As a final result, we prove that there is no nontrivial Toeplitz operator T|fη|
in the Schatten p-class of b2.

Theorem 15. Let 1 ≤ p < ∞ and f ∈ b1. Then T|f |η ∈ Sp if and only if
f = 0 on B.

Proof. Suppose T|f |η ∈ Sp. By (4), we recall that
{

1 + log
1

1− |x|
}−1

≤ Cη(x), x ∈ B

for some constant C > 0 depending on n. Using (16) and Lemma 14, we can
see

N :=
∫

B

|f(x)|p
(

1 + log
1

1− |x|
)−p

dλ(x) <∞.
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Recall that the integral
∫

∂B
|f(rζ)|p dσ(ζ) is increasing with r; see Chapter 2

of [9] for example. Now, using the integrating in polar coordinates, we obtain

N ≥ nV (B)
∫ 1− t

2

1−t

rn−1

(1− r)n
(
1 + log 1

1−r

)p

∫

S

|f(rζ)|p dσ(ζ)dr

≥ nV (B)(1− t)n−1

2tn−1
(
1 + log 2

t

)p

∫

S

|f((1− t)ζ)|p dσ(ζ)

and hence
∫

S

|f((1− t)ζ)|p dσ(ζ) ≤ 2Ntn−1
(
1 + log 2

t

)p

nV (B)(1− t)n−1
(20)

for any 0 < t < 1. Let |x| < 1/2 < 1− t < 1. Since the (1− t)-dilated function
f1−t is continuous on B̄ and harmonic on B, we have

f(x) =
∫

S

1− | x
1−t |2

| x
1−t − ζ|n f((1− t)ζ) dσ(ζ);

see Chapter 1 of [1]. It follows from Jensen’s inequality and (20) that

|f(x)|p ≤
(

2− 2t
1− 2t

)p ∫

S

|f((1− t)ζ)|p dσ(ζ)

≤
(

2− 2t
1− 2t

)p 2Ntn−1
(
1 + log 2

t

)p

nV (B)(1− t)n−1

whenever |x| < 1
2 < 1 − t < 1. Since the last term goes to 0 as t → 0, we

have f(x) = 0 for all |x| < 1
2 . Hence f = 0 on B, as desired. The converse

implication is clear. The proof is complete. ¤
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