SOME PROPERTIES OF TOEPLITZ OPERATORS WITH SYMBOL μ

Si Ho Kang*

ABSTRACT. For a complex regular Borel measure μ on Ω which is a subset of \mathbb{C}^k , where k is a positive integer we define the Toeplitz operator T_{μ} on a reproducing analytic space which comtains polynomials. Using every symmetric polynomial is a polynomial of elementary polynomials, we show that if T_{μ} has finite rank then μ is a finite linear combination of point masses.

1. Introduction

Let Ω be a subset of \mathbb{C}^k and let μ be a complex regular Borel measure on Ω . Suppose H is a separable reproducing analytic space on Ω which contains polynomials.

If $T_{\mu}f(z) = \int_{\Omega} f(w)\overline{K_z(w)}d\mu(w)$ has finite rank, where K_z is the reproducing kernel of H, then μ must be singular with $\mathrm{supp}\mu = \{z_1, \cdots, z_M\}$, that is, μ is a finite linear combination of point masses. Toeplitz operators are an important role in the physics and engeneering area. First Toeplitz operators were defined on the Hardy space H^2 by $T_{\varphi}f = P(\varphi f)$, where φ is in $L^{\infty}(\partial \mathbb{D})$ and P is the Szegö projection. Similarly Toeplitz operators on the Bergman space L_a^2 are defined by $T_{\varphi}(f) = P(uf)$, where P is the Bergman projection from $L^2(dA)$ to $L_a^2([3])$.

Since H^{∞} is dense in L_a^2 , we can densely define Toeplitz operators with symbols that are measures. Moreover, we can extend the notion of Toeplitz operators to those with symbol measures ([1],[2],[5]). Luccking's paper ([1]) is devoted to characterization of a complex regular Borel measure μ on the unit disk whenever the Toeplitz operator T_{μ} has finite rank.

Received April 22, 2010; Accepted June 01, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 47B35, 47B47.

Key words and phrases: weighted Bergman spaces, Toeplitz operators, support, elementary polynomials.

In this paper, we introduce the symmetrization and the antisymmetrization of functions defined on a subset of \mathbb{C}^k and we prove that every symmetric polynomial is a polynomial of elementary polynomials. Section 3 is deal with the following theorem.

THEOREM 1.1. Suppose μ is a complex regular Borel measure on $\Omega \subset \mathbb{C}^k$ and H is a separable reproducing analytic space on Ω which contains all polynomials. Then T_{μ} has finite rank if and only if supp μ is a finite set.

2. Polynomials

Let k and N be fixed positive integers and let Ω be a subset of \mathbb{C}^k . In the following, we will assume that $f:\Omega^N\to\mathbb{C}$ is a function of N-variables. For $z\in\Omega$, let $z=(z^1,\cdots,z^k)$ and let $e_0=1,\ e_1(z_1,\cdots,z_N)=z_1+\cdots+z_N=(z_1^1+z_2^1+\cdots+z_N^1,\cdots,z_1^k+z_2^k+\cdots+z_N^k),\ e_2(z_1,\cdots,z_N)=\sum_{i< j}z_iz_j=(\sum_{i< j}z_i^1z_j^1,\sum_{i< j}z_i^2z_j^2,\cdots,\sum_{i< j}z_i^kz_j^k),\ e_3(z_1,\cdots,z_N)=(\sum_{i< j< l}z_i^1z_j^1z_l^1,\cdots,\sum_{i< j< l}z_i^kz_j^kz_l^k),\ \cdots$ and $e_N(z_1,z_2,\cdots,z_N)=(z_1^1\cdots z_N^1,z_1^2\cdots z_N^2,\cdots,z_N^2)$ and $e_N(z_1,z_2,\cdots,z_N)=(z_1^1\cdots z_N^1,z_1^2\cdots z_N^2,\cdots,z_N^2)$ and $e_N(z_1,z_2,\cdots,z_N)=(z_1^1\cdots z_N^1,z_1^2\cdots z_N^2,\cdots,z_N^2)$ and $e_N(z_1,z_2,\cdots,z_N^2)=(z_1^1\cdots z_N^1,z_1^2\cdots z_N^2,\cdots,z_N^2)$ and $e_N(z_1,z_2,\cdots,z_N^2)=(z_1^1\cdots z_N^2,\cdots,z_N^2)=(z_1^1+z_1^2\cdots z_N^2,\cdots,z$

example, let $f(z_1, z_2) = z_1^{(2,2,\cdots,2)} + z_2^{(2,\cdots,2)}$. Then $f(z_1, z_2) (=z_1^2 + z_2^2) = (z_1 + z_2)^2 - 2z_1z_2 = e_1^2 - 2e_2$ and hence f is a polynomial of elementary polynomials. Let S_N denote the set of all bijection from N to N, where $N = \{1, 2, \cdots, N\}$. For $\sigma \in S_N$, we define $\varepsilon_{\sigma} = +1$ for an even permutation and -1 for an odd permutation.

DEFINITION 2.1. Suppose p is a polynomial function on Ω^N . Then we say that

- (1) p is symmetric if for any $\sigma \in S_N$, $\sigma p = p$, where $\sigma p(z_1, \dots, z_N) = p(z_{\sigma(1)}, \dots, z_{\sigma(N)}) = p((z_{\sigma(1)}^1, \dots, z_{\sigma(N)}^1), \dots, (z_{\sigma(N)}^1, \dots, z_{\sigma(N)}^k))$. (2) p is antisymmetric if for each $\sigma \in S_N$, $\sigma p = \varepsilon_{\sigma} p$.
- We note that e_1 and e_2 are symmetric polynomials. Suppose f is a polynomial function of z_1, z_2, \dots, z_N . We define the symmetrization and

the antisymmetrization of f, that is, $Sf(z_1, \dots, z_N) = \frac{1}{|S_N|} \sum_{\sigma \in S_N} \sigma f(z_1, \dots, z_N)$

$$\cdots, z_N$$
) and $Af(z_1, \cdots, z_N) = \frac{1}{|S_N|} \sum_{\sigma \in S_N} \varepsilon_{\sigma} \sigma f(z_1, \cdots, z_N)$. Then f is

a symmetric polynimial if and only if Sf = f and f is antisymmetric if and only if Af = f. Moreover, ASf = 0 = SAf.

Proposition 2.2. Let $f(z) = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_N^{\alpha_n}$, where each multi-index α_i is a k-tuple of nonnegative integers $(\alpha_i^1, \dots, \alpha_i^k)$.

- (1) If $\alpha_s = \alpha_t$ for some $s \neq t$ then Af = 0.
- (2) (a) If σ is an even permutation then $A\sigma f = f$.
 - (b) If σ is an odd permutation then $A\sigma f = -f$.

Proof. (1) Let
$$\sigma=(s,t)$$
. Then $\sigma f=f$ and hence $\sum_{\sigma\in S_N}\varepsilon_\sigma\sigma f=0$.

Thus Af = 0.

Thus
$$Af = 0$$
.

(2) If follows from the fact that for any $\tau \in S_N$,

$$\varepsilon_{\tau}\tau\sigma f(z_1, \dots, z_N) = \begin{cases} \varepsilon_{\gamma}\gamma f(z_1, \dots, z_N) & \text{if } \sigma \text{ is even and } \gamma = \tau\sigma \\ -\varepsilon_{\gamma}\gamma f(z_1, \dots, z_N) & \text{if } \sigma \text{ is odd and } \gamma = \tau\sigma. \end{cases}$$

COROLLARY 2.3. If $\sigma f = g$ for some $\sigma \in S_N$ then

$$Ag = \left\{ \begin{array}{ll} Af & , \ \sigma \text{ is even} \\ -Af & , \ \sigma \text{ is odd.} \end{array} \right.$$

Let
$$V = \begin{pmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{N-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & z_N & z_N^2 & \dots & z_N^{N-1} \end{pmatrix}$$
. Then V is the Vandermonde

determinant and by induction,
$$V = \prod_{i < j} (z_j - z_i) = \prod_{i < j} \prod_{l=1}^k (z_j^l - z_i^l)$$
. For $J = (\alpha_1, \alpha_2, \dots, \alpha_N)$, where whenever $s < t$, $\alpha_s^i < \alpha_t^i$ for all $i = 1, 2, \dots, k$, define $V_J = \begin{vmatrix} z_1^{\alpha_1} & z_1^{\alpha_2} & \dots & z_1^{\alpha_N} \\ z_2^{\alpha_1} & z_2^{\alpha_2} & \dots & z_2^{\alpha_N} \\ \vdots & \vdots & \ddots & \vdots \\ z_N^{\alpha_1} & z_N^{\alpha_2} & \dots & z_N^{\alpha_N} \end{vmatrix}$. Let $J_1 = (0, 1, 2, \dots, N-1)$. Then

 $V_{J_1} = V$ and V is the minimal-degree polynomial vanishing on $\bigcup \{(z_1, z_1, z_2, \ldots, z_n)\}$ \cdots, z_N): $z_i^s = z_j^s$ for some $s \in \{1, 2, \cdots, k\}\}$. Let $p(z) = a_0 + a_1 z + \cdots + a_n z_n + a_n z_n$ $a_n z^n. \text{ Then } p(z) - p(z_0) = (z - z_0)(a_1 + a_1(z + z_0) + \dots + a_n(z^{n-1} + z^{n-2}z_0 + \dots + z_0^{n-1})) = ((z^1 - z_0^1)(a_1 + a_2(z^1 + z_0^1) + \dots + a_n((z^1)^{n-1} + (z^1)^{n-2}z_0^1 + \dots + (z_0^1)^{n-1})), \dots, (z^k - z_0^k)(a_1 + a_2(z^k + z_0^k) + \dots + a_n((z^k)^{n-1} + (z^k)^{n-2}z_0^k + \dots + (z_0^k)^{n-1})). \text{ Since the degree of } a_1 + a_2(z + z_0) + \dots + a_n(z^{n-1} + \dots + z_0^{n-1}) \text{ is } n - 1, p(z) - p(z_0) = (z - z_0)Q(z) \text{ for some } Q(z) \text{ with } \deg(Q(z)) = n - 1 \text{ and hence if a polynomial } p \text{ vanishes at } a \in \mathbb{C}^k \text{ then } z - a \text{ divides } p.$

Lemma 2.4. Suppose f is an antisymmetric polynomial. Then there is a symmetric polynomial g such that f = Vg.

Proof. Since f is antisymmetric, $f(z_1, z_2, z_3, \dots, z_N) = -f(z_2, z_1, z_3, \dots, z_N)$ and hence $f(a, a, z_3, \dots, z_N) = 0$ for all $a \in \mathbb{C}$. Let $p(z) = f(z, a, z_3, \dots, z_N)$. Since z-a divides $p(z), z_2-z_1$ divides $f(z_1, z_2, z_3, \dots, z_N)$. Since $z_2-z_1 = \prod_{s=1}^k (z_2^s - z_1^s)$, V divides f. Let $g(z_1, z_2, \dots, z_N) = \frac{f(z_1, \dots, z_N)}{V}$. Take any permutation σ in S_N . Since $\sigma g = \frac{\sigma f}{\sigma V} = \frac{\varepsilon_{\sigma} f}{\varepsilon_{\sigma} V} = \frac{f}{V} = g$, g is symmetric. This completes the proof.

Let $J=(\alpha_1,\alpha_2,\cdots,\alpha_N)$, where for $s< t,\ \alpha_s^i<\alpha_t^i$ for all $i=1,2,\cdots,k$. Let $g(z_1,z_2,\cdots,z_N)=z_1^{\alpha_1}z_2^{\alpha_2}\cdots z_N^{\alpha_N}$ be a monomial. We note that the range of A is the vector space of all antisymmetric polynomials and hence the images of all monomials span the range of A. By Lemma 2.4, $A(g(z_1,\cdots,z_N))=\frac{V_J}{N!}$. This implies that each antisymmetric polynomial is a linear combination of $V_J's$, that is, for any antisymmetric polynomial $f,\ f=\sum_I C_J V_J$.

LEMMA 2.5. Each symmetric polynomial $f(z_1, z_2, \dots, z_N)$ can be written a polynomial of elementary polynomials e_1, \dots, e_N .

Proof. We note that the statement is trivially true for N=1. Let $\mathbb{C}[z_1,z_2,\cdots,z_N]$ denote the set of all polynomials of N-variables. We define $Q:\mathbb{C}[z_1,z_2,\cdots,z_N]\to\mathbb{C}[z_1,z_2,\cdots,z_N]$ by $Q(p(z_1,z_2,\cdots,z_N))=p(z_1,\cdots,z_{N-1},0)$. Suppose f is a symmetric polynomial of z_1,z_2,\cdots,z_N . Put $g(z_1,z_2,\cdots,z_{N-1})=Q(f(z_1,z_2,\cdots,z_N))$. Then $Q(f(z_1,z_2,\cdots,z_N))$ is also a symmetric polynomial of z_1,z_2,\cdots,z_{N-1} . By induction hypothesis, there exists a polynomial $p(z_1,z_2,\cdots,z_{N-1})$ such that $g(z_1,z_2,\cdots,z_{N-1})=p(e_1(z_1,\cdots,z_{N-1}),e_2(z_1,\cdots,z_{N-1}),\cdots,e_{N-1}(z_1,z_1,\cdots,z_{N-1}))$

 $\begin{array}{l} \cdots,z_{N-1})). \text{ Define } F(z_1,z_2,\cdots,z_N) = p(e_1(z_1,\cdots,z_{N-1}),\cdots,e_{N-1}(z_1,\cdots,z_{N-1})) \\ = g(z_1,z_2,\cdots,z_{N-1}) = Q(f(z_1,z_2,\cdots,z_N)), \, Q(f(z_1,z_2,\cdots,z_N)-F(z_1,z_2,\cdots,z_N)) \\ = 0. \text{ Put } G(z_1,z_2,\cdots,z_N) = f(z_1,z_2,\cdots,z_N)-F(z_1,z_2,\cdots,z_N). \\ = (c_1,c_2,\cdots,c_N). \text{ Since } Q(G(z_1,z_2,\cdots,z_N)) \\ = (c_1,c_2,\cdots,c_N). \text{ Since } G \text{ is a symmetric polynomial, } z_1z_2\cdots z_N(=e_N(z_1,z_2,\cdots,z_N)) \\ = (c_1,c_2,\cdots,c_N)) \text{ divies } G \text{ and hence } f(z_1,z_2,\cdots,z_N)-p(e_1(z_1,z_2,\cdots,z_N),\cdots,e_{N-1}(z_1,z_2,\cdots,z_N)) \\ = (c_1,c_2,\cdots,c_N)) \\ = (c_1,c_2,\cdots,c_N)) \\ = (c_1,c_2,\cdots,c_N) \\ = (c_1,c_2,\cdots,c_N) \\ = (c_1,c_2,\cdots,c_N) \\ = (c_1,c_2,\cdots,c_N) \\ = (c_1,c_2,\cdots,c_N),\cdots,e_N(z_1,z_2,\cdots,z_N),\cdots,e_N(z_1,z_2,\cdots,z_N),\cdots,e_N(z_1,z_2,\cdots,z_N)) \\ = (c_1,c_2,\cdots,c_N),\cdots,e_N(z_1,z_2,\cdots,z_N)) \\ = (c_1,c_2,\cdots,c_N) \\ = (c_1,c_2,\cdots,c_$

Suppose (z_1,z_2,\cdots,z_N) and (w_1,w_2,\cdots,w_N) are in Ω^N . Then $(e_1(z_1,z_2,\cdots,z_N),\cdots,e_N(z_1,z_2,\cdots,z_N))=(e_1(w_1,w_2,\cdots,w_N),\cdots,e_N(w_1,w_2,\cdots,w_N))$ if and only if $\prod_{i=1}^N (\lambda-z_j)=\prod_{i=1}^N (\lambda-w_j)$ for all $\lambda\in\mathbb{C}$ if and only if $\lambda^N-e_1(z_1,z_2,\cdots,z_N)\lambda^{N-1}+\cdots+(-1)^Ne_N(z_1,z_2,\cdots,z_N)=\lambda^N-e_1(w_1,w_2,\cdots,w_N)\lambda^{N-1}+\cdots+(-1)^Ne_N(w_1,w_2,\cdots,w_N)$ for all $\lambda\in\mathbb{C}$. Since S_N acts on $(\mathbb{C}^k)^N$ as $\sigma(z_1,z_2,\cdots,z_N)=(z_{\sigma(1)},z_{\sigma(2)},\cdots,z_{\sigma(N)})$ for all $\sigma\in S_N$, it induces an equivalence relation on $(\mathbb{C}^k)^N$, that is, $(z_1,z_2,\cdots,z_N)\sim(w_1,w_2,\cdots,w_N)$ if and only if $\sigma(z_1,z_2,\cdots,z_N)=(w_1,w_2,\cdots,w_N)$ for some $\sigma\in S_N$ if and only if $(e_1(z_1,z_2,\cdots,z_N),\cdots,e_N(z_1,z_2,\cdots,z_N))=(e_1(w_1,w_2,\cdots,w_N),\cdots,e_N(w_1,w_2,\cdots,w_N))$. Thus $\{e_1,e_2,\cdots,e_N\}$ does not seperate Ω^N . Since $\overline{\Omega}^N/$ is a compact Hausdorff space, span $\{f(e_1,\cdots,e_N)\overline{g(e_1,\cdots,e_N)}:f,g\in\mathbb{C}[z_1,z_2,\cdots,z_N]\}$ seperates points of $\overline{\Omega}^N/$. Let $E=\mathrm{span}\{f(e_1,\cdots,e_N)\overline{g(e_1,e_2,\cdots,e_N)}:f,g\in\mathbb{C}[z_1,z_2,\cdots,z_N]\}$. By Stone-Weierstrass theorem, E is dense in $C[e_1,e_2,\cdots,e_N]$, where $C[e_1,\cdots,e_N]$ is the set of continuous functions.

3. Toeplitz operators

Suppose H is a separable reproducing analytic space on Ω which contains polynomials. Let $K_z(w)$ be a reproducing kernel of H, that is,

for each $f \in H$, $\int_{\Omega} f(w)\overline{K_z(w)}dV(w) = f(z)$, where dV is the Lebesque volume measure. For an orthnormal basis $\{e_n(z)\}$ of H and $f \in H$, $f(z) = \sum_{n=1}^{\infty} \langle f, e_n \rangle \langle e_n(z) \rangle$ and hence $K_z(w) = \sum_{n=1}^{\infty} \overline{e_n(z)}e_n(w)$. Thus $\overline{K_z(w)} = K_w(z)$. Let $\mathbb{C}[z]$ denote the set of polynomials. Given a complex regular Borel measure μ on Ω , we define a Toeplitz operator T_μ with symbol μ by $T_\mu f(z) = \int_{\Omega} f(w)\overline{K_z(w)}d\mu(w)$, $f \in \mathbb{C}[z]$. Suppose f and g are in $\mathbb{C}[z]$. Then

Since the closure of span $\{w^k, \overline{w}^n\}_{k,n\geq 0} = C(\overline{\mathbb{D}}), T_{\mu} = 0$ if and only if $\mu = 0$.

Lemma 3.1. Suppose T_{μ} has finte rank N-1. If $f \in \mathbb{C}[z_1, z_2, \cdots, z_N]$ and g is an antisymmetric polynomial then $\int_{\Omega^N} f(z_1, z_2, \cdots, z_N) \times \overline{g(z_1, z_2, \cdots, z_N)} d\mu(z_1) d\mu(z_2) \cdots d\mu(z_N) = 0$.

Proof. Suppose Range $T_{\mu} = \text{span}\{F_1, F_2, \cdots, F_{N-1}\}$. Then for any $f_j \in \mathbb{C}[z]$, there is $(c_{j1}, c_{j2}, \cdots, c_{j(N-1)})$ such that $T_{\mu}f_j = \sum_{i=1}^{N-1} c_{ji}F_i$. Suppose $0 = c_1T_{\mu}f_1 + \cdots + c_NT_{\mu}f_N = \sum_{j=1}^{N} c_j(\sum_{i=1}^{N-1} c_{ji}F_i) = \sum_{i=1}^{N-1} (\sum_{j=1}^{N} c_jc_{ji})F_i$.

Since $\{F_1, F_2, \dots, F_{N-1}\}$ is linearly independent, $\sum_{j=1}^{N} c_j c_{ji} = 0$ for $i = 1, 2, \dots, N$

 $1, 2, \dots, N-1$. Since the number of equation is less than the number of unknown, there exists $(c_1, c_2, \dots, c_N) \neq (0, 0, \dots, 0)$ such that $c_1 T_{\mu} f_1 + c_2 T_{\mu} f_2 + \dots + c_N T_{\mu} f_N = 0$. Pick up other N functions

$$g_1, g_2, \cdots, g_N$$
 in $\mathbb{C}[z]$. Since $\sum_{j=1}^N c_j T_\mu f_j = 0$, $0 = < \sum_{j=1}^N c_j T_\mu f_j, g_i >$

for $i = 1, 2, \dots, N$ and hence we get a system of linear equations:

$$\left[\begin{array}{llll} c_1 < T_\mu f_1, g_1 > & +c_2 < T_\mu f_2, g_1 > & +\cdots & +c_N < T_\mu f_N, g_1 > & =0 \\ c_1 < T_\mu f_1, g_2 > & +c_2 < T_\mu f_2, g_2 > & +\cdots & +c_N < T_\mu f_N, g_2 > & =0 \\ & \vdots & & & \\ c_1 < T_\mu f_1, g_N > & +c_2 < T_\mu f_2, g_N > & +\cdots & +c_N < T_\mu f_N, g_N > & =0 \end{array} \right.$$

Let
$$A = \begin{vmatrix} \langle T_{\mu}f_{1}, g_{1} \rangle & \langle T_{\mu}f_{2}, g_{1} \rangle & \cdots & \langle T_{\mu}f_{N}, g_{1} \rangle \\ \vdots & & & \\ \langle T_{\mu}f_{1}, g_{N} \rangle & \langle T_{\mu}f_{2}, g_{N} \rangle & \cdots & \langle T_{\mu}f_{N}, g_{N} \rangle \end{vmatrix}$$
 and let A_{ij}

be the cofactor of A. Since the system has a non-trivial solution, 0 = A $= \langle T_{\mu}f_1, g_1 \rangle A_{11} + \langle T_{\mu}f_1, g_2 \rangle A_{21} + \dots + \langle T_{\mu}f_1, g_N \rangle A_{N1}$

$$= \left(\int_{\Omega} f_1(z_1) \overline{g_1(z_1)} d\mu \right) A_{11} + \dots + \left(\int_{\Omega} f_1(z_1) \overline{g_N(z_1)} d\mu \right) A_{N1}$$

$$= \int_{\Omega} f_1(z_1) [\overline{g_1(z_1)} A_{11} + \overline{g_1(z_1)} A_{21} + \dots + \overline{g_N(z_1)} A_{N1}] d\mu(z_1)$$

$$= \int_{\Omega} f_{1}(z_{1}) [\overline{g_{1}(z_{1})} A_{11} + \overline{g_{1}(z_{1})} A_{21} + \dots + \overline{g_{N}(z_{1})} A_{N1}] d\mu(z_{1})$$

$$= \int_{\Omega} f_{1}(z_{1}) \begin{vmatrix} \overline{g_{1}(z_{1})} & < T_{\mu} f_{2}, g_{1} > \dots < T_{\mu} f_{N}, g_{1} > \\ \overline{g_{2}(z_{1})} & < T_{\mu} f_{2}, g_{2} > \dots < T_{\mu} f_{N}, g_{2} > \\ \vdots \\ \overline{g_{N}(z_{1})} & < T_{\mu} f_{2}, g_{N} > \dots < T_{\mu} f_{N}, g_{N} > \end{vmatrix} d\mu(z_{1})$$

$$\left| \begin{array}{c} \overline{g_{N}(z_{1})} < T_{\mu}f_{2}, g_{N} > \cdots < T_{\mu}f_{N}, g_{N} > \\ \\ = \int_{\Omega} \int_{\Omega} f_{1}(z_{1}) \cdots f_{N}(z_{N}) \left| \begin{array}{c} \overline{g_{1}(z_{1})} & \overline{g_{1}(z_{2})} & \cdots & \overline{g_{1}(z_{N})} \\ \overline{g_{2}(z_{1})} & \overline{g_{2}(z_{2})} & \cdots & \overline{g_{2}(z_{N})} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{g_{N}(z_{1})} & \overline{g_{N}(z_{2})} & \cdots & \overline{g_{N}(z_{N})} \end{array} \right| d\mu(z_{1}) \cdots d\mu(z_{N}),$$

where the sixth equality comes from the induction.

I.e.,
$$0 = \int_{\Omega} \int_{\Omega} \prod_{j=1}^{N} f_j(z_j) \begin{vmatrix} g_1(z_1) & g_1(z_2) & \cdots & g_1(z_N) \\ g_2(z_1) & g_2(z_2) & \cdots & g_2(z_N) \\ \vdots & & & & \\ g_N(z_1) & g_N(z_2) & \cdots & g_N(z_N) \end{vmatrix} d\mu(z_1) \cdots d\mu(z_N).$$

For $J = (\alpha_1, \alpha_2, \dots, \alpha_N)$, where whenever $s < t, \alpha_s^i < \alpha_t^i$ for all $i=1,2,\cdots,k,$ let $g_i(z_j)=z_j^{\alpha_i}$. Then $0=\int_{\Omega^N}f(z)\overline{V_J(z)}d\mu^N(z)$. Take any antysymmetric polynomial g. Since each antisymmetric polynomial is a linear combination of $V_J's$, $g = \sum C_J V_J$ for some C_J and hence

$$\int_{\Omega^N} f(z)\overline{g(z)}d\mu^N(z) = \sum_{i} C_{ij} \int_{\Omega^N} f(z)\overline{V_{ij}}d\mu^N(z) = 0.$$

Let $E = \operatorname{span}\{f(e_1, e_2, \cdots, e_N)\overline{g(e_1, e_2, \cdots, e_N)}\}: f, g \in \mathbb{C}[z_1, z_2, \cdots, z_N]$ and let C denote the continuity of the function. Then $E \subset C[e_1, e_2, \cdots, e_N]$ and E is dense in $C[e_1, e_2, \cdots, e_N]$. Since each symmetric polynomial can be written a polynomial of elementary polynomials, for every $F: \Omega^N \to C(\overline{\Omega}^N)$,

$$0 = \int_{\Omega} \cdots \int_{\Omega} F(e_1, \cdots e_N) |V(z_1, \cdots, z_N)|^2 d\mu(z_1) \cdots d\mu(z_N).$$

Take any continuous function f in $C(\overline{\Omega^N})$. Let $Sf(z_1, \dots, z_N)$ be the symmetrization of f. Put $F(z_1, z_2, \dots, z_N) = Sf(z_1, z_2, \dots, z_N)$. Then

$$0 = \int_{\Omega} \cdots \int_{\Omega} Sf(z_1, \dots, z_N) |V(z_1, \dots, z_N)|^2 d\mu(z_1) \cdots d\mu(z_N)$$

$$= \frac{1}{|S_N|} \sum_{\sigma \in S_N} \int_{\Omega} \cdots \int_{\Omega} f(z_{\sigma(1)}, \dots, z_{\sigma(N)}) |V(z_1, \dots, z_N)|^2 d\mu(z_1) \cdots d\mu(z_N).$$

Since $|V(z_1, \dots, z_N)|^2$ and $d\mu^N$ are both invariant under permutations of the coordinates, $|V(z_1, \dots, z_N)|^2 d\mu^N = 0$. Thus μ is supported on the set where V vanishes. Therefore we have the following:

THEOREM 3.2. Let μ be a complex regular Borel measure on Ω which is a subset of \mathbb{C}^k and H a separable reproducing analytic space on Ω which contains all polynomials. Then T_{μ} has finite rank if and only if μ is supported on the finite set, that is, μ is a finite linear combination of point masses.

Suppose μ is a complex regular Borel measure on the unit disk \mathbb{D} . For $\alpha > -1$, the weighted Bergman space A^p_α consists of the analytic functions in $L^p(\mathbb{D}, dA_\alpha)$, where $dA_\alpha(z) = (\alpha+1)(1-|z|^2)^\alpha dA(z) = \frac{1}{\pi}(\alpha+1)(1-|z|^2)^\alpha dxdy$. Then $K^\alpha_z(w) = \frac{1}{(1-\overline{z}w)^{2+\alpha}}$ is a reproducing

kernel of A_{α}^2 . Then $< f, K_z^{\alpha} > = \int_{\mathbb{D}} f(w) \overline{K_z^{\alpha}(w)} dA_{\alpha}$ for all $f \in A_{\alpha}^2$, A_{α}^2 is a separable reproducing analytic space and contains all polynomials. If μ is absolutely continuous with respect to dA_{α} then $d\mu = \varphi dA_{\alpha}$ for some $\varphi \in L^1(\mathbb{D}, dA_{\alpha})$. If T_{μ} has finite rank then $\{z \in \mathbb{D} : \varphi(z) \neq 0\}$ is a finite set. Since $A_{\alpha}^p \subset L^p(\mathbb{D}, d\mu)$, μ is a Carleson measure on the weighted Bergman space A_{α}^p and hence T_{μ} is a bounded linear operator.

In fact, the measure μ is the zero measure and whenever ν is a complex regular Borel measure on the unit disk $\mathbb D$ and T_{ν} has finite rank, ν is a finite linear combination of point masses.

References

- [1] D. H. Luecking, Finite rank Toeplitz operators on the Bergman Space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717-1723.
- [2] D. H. Luecking, Trace and criteria for Toeplitz operators, J. Fanct. Anal. 73 (1987), 345-368.
- [3] G. McDonald and C. Sundberg, *Toeplitz operators on the disc*, Indiana Univ. Math. J. **28** (1979), no. 4, 595-611.
- [4] H. L. Royden, Real Analysis, The Macmillan company, New York, 1998.
- [5] K. Zhu, Operator theory in Function Spaces, 2nd ed., Amer. Math. Soc. Providence, RI, 2005.

*

Department of Mathematics Sookmyung Women's University Seoul 140-742, Republic of Korea *E-mail*: shkang@sookmyung.ac.kr