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SOME PROPERTIES OF TOEPLITZ OPERATORS
WITH SYMBOL pu

S1 Ho KaNng*

ABSTRACT. For a complex regular Borel measure p on {2 which is
a subset of C*, where k is a positive integer we define the Toeplitz
operator 1), on a reproducing analytic space which comtains poly-
nomials. Using every symmetric polynomial is a polynomial of ele-
mentary polynomials, we show that if 7}, has finite rank then g is
a finite linear combination of point masses.

1. Introduction

Let Q be a subset of CF and let 1 be a complex regular Borel measure
on §2. Suppose H is a seperable reproducing analytic space on 2 which
contains polynomials.

If Tuf(z):/ f(w)K,(w)du(w) has finite rank, where K, is the repro-

ducing kernegl2 of H, then p must be singular with suppu={z1,---, 2},
that is, p is a finite linear combination of point masses. Toeplitz oper-
ators are an important role in the physics and engeneering area. First
Toeplitz operators were defined on the Hardy space H? by T, f=P(ef),
where ¢ is in L*°(9D) and P is the Szegd projection. Similarly Toeplitz
operators on the Bergman space L2 are defined by T, (f)=P(uf), where
P is the Bergman projection from L?(dA) to L2([3]).

Since H* is dense in L2, we can densely define Toeplitz operators
with symbols that are measures. Moreover, we can extend the notion of
Toeplitz operators to those with symbol measures ([1],[2],[5]). Luecking’s
paper ([1]) is devoted to characterization of a complex regular Borel
measure /. on the unit disk whenever the Toeplitz operator 7}, has finite
rank.
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In this paper, we introduce the symmetrization and the antisym-
metrization of functions defined on a subset of C¥ and we prove that
every symmetric polynomial is a polynomial of elementary polynomials.

Section 3 is deal with the following theorem.

THEOREM 1.1. Suppose u is a complex regular Borel measure on
Q C C* and H is a separable reproducing analytic space on ) which
contains all polynomials. Then T}, has finite rank if and only if supppu
is a finite set.

2. Polynomials

Let k£ and N be fixed positive integers and let Q be a subset of CF.
In the following, we will assume that f : QY — C is a function of N-

variables. For z € Q, let z=(2',--- | 2*) and let eg=1, e1(21,--- ,2n) =
21+ ey = (21 23+ —I—z}v,--- z{“+z§+ +z]’“v) ez(zl, L EN) =
1.1 1
ZZZZJ Zzl J’Zzl Zj Zz ves(en, oo,z Z ZiZj A
1<j 1<j 1<J 1<j <j<l
k kK 1 1,2 2
..7ZZZZl) andeN(Zl7Z27”.’ZN):(ZI‘.'ZN’ZIU'Z]\”..'7
i<j<l
N
N N-1 N-2 N
o 2k). Then JJ(t—2) =tV — etV +eatV 2 4 oo 4 (—1)Vey
j=1

— (tN—(Z%—I—'--—I—z )tN_l—l—-'-—l-(—1)NZ%'“Z}V,-",tN—(Zf—I—-'-—{—
RNy +(=)N 2k -2K) and e;’s are elementary polynomials. For
example, let f(z1,22) = 252’2""’2) + 252""’2). Then f(z1, 20)(=2% + 23)
= (21 + z2)2 — 22129 = €2 — 2e5 and hence f is a polynomial of elemen-
tary polynomials. Let Sy denote the set of all bijection from N to N,
where N = {1,2,--- ,N}. For o € Sy, we define e,=+1 for an even
permutation and -1 for an odd permutation.

DEFINITION 2.1. Suppose p is a polynomial function on Q.
Then we say that
(1) p is symmetric if for any o € Sy, op = p, where op(z1, -+ ,zy) =
p(ZU(l)a T >Zo—(N)) = p((Z;(l), T ,z;(N)),- ) (zclr(Ny T 7Z§(N)))-
(2) p is antisymmetric if for each o € Sy, op = g4p.

We note that e; and ey are symmetric polynomials. Suppose f is a
polynomial function of z1, 29, - - - , zxy. We define the symmetrization and
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the antisymmetrization of f, that is, Sf(z1, -, 2zn) ]S | Z of(z1,
N
ceSN

-yzn) and Af(z1,--- 2N | ‘ Z g0 f(z1,-+,2n). Then f is
N

oceSN
a symmetric polynimial if and only if Sf = f and f is antisymmetric if

and only if Af = f. Moreover, ASf =0 = SAf.

PROPOSITION 2.2. Let f(z) = 2" 257 - - - 23", where each multi-index
i is a k-tuple of nonnegative integers (o}, - - - ,af).

(1) If s = o for some s # t then Af = 0.
(2) (a) If o is an even permutation then Acf = f.
(b) If o is an odd permutation then Acf = —f.

Proof. (1) Let 0 = (s,t). Then of = f and hence Z eqof = 0.

oESN
Thus Af = 0.
(2) If follows from the fact that for any 7 € Sy,
_ J eyvf(z1,-- ,2n) if oisevenand vy =710
e f(z1,0 5 2n) = { —evf(z1,--+ ,2n) if oisodd and v = To.
O
COROLLARY 2.3. If of = g for some o € Sy then
| Af , oiseven
Ag—{ ~Af , o isodd.
1 = z% - {V 1
1z 22 ... zé\] !
Let V=| . . o . . Then V is the Vandermonde
1 zn 2]2\, - z% 1

determinant and by induction, V:H(zj — Zi):H H(zé — Y. For

i<j i<jl=1
J=(a1,a9,...,ay), where whenever s < ¢, o’ < aj foralli =1,2,...,k,
a1 a2 anN
2ot 297 .. zZg
define Vy =1 L . |. Let J1=(0,1,2,--- /N —1). Then
(51 (6] aN
2N AN - 2N

Vj, =V and V is the minimal-degree polynomial vanishing on U{(zl,
i#]
©,2N) 1 7] = zj for some s € {1,2,--- ,k}}. Let p(z)=ao+a1z+---+
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2", Then p(2)—p(z0)=(2—20)(a1+a1(z+20) + - - Fan (2" 14+2"" 220+
42 T)=((21 = ) a1+ ap(et + ) + -+ an((ZD) T+ (21"
Feoo (2 )” D) (2R = 2 e+ aa(Z 4 )+t an((ZF) T+
(""" 2 2B+ 4+ (25" 7). Since the degree of aj + ag(z + 20) + -+ +

an (2"~ 1—1— +z8 Disn—1, p(z) —p(20) = (2 — 20)Q(2) for some Q( )
with deg(Q(z)) = n — 1 and hence if a polynomial p vanishes at a € C*
then z — a divides p.

,_.

LEMMA 2.4. Suppose f is an antisymmetric polynomial. Then there
is a symmetric polynomial g such that f = Vg.

Proof. Since f is antisymmetric, f(z1, 22,23, ,2n) = —f(22, 21, 23,

,zn) and hence f(a,a, z3,---,zy) = 0 for all a € C. Let p(z) =

f(z,a,z23, -+ ,2zN). Since z—a divides p(z), 20—z divides f(z1, 22, 23, -+ ,
k

zZN). Since zg — 21 = H(ZS —27), V divides f. Let g(21,22, -+ ,2n) =

s=1
z R ’z i . . £
—f( ! N). Take any permutation ¢ in Sy. Since g = o _ of
\% oV &,V

= é = g, g is symmetric. This completes the proof. O

Let J = (a1,09, -+ ,ay), where for s < t, o’ < a! for all i =
1,2,--- k. Let g(z1,22, -+ ,2n) = 27257 .-+ 23/ be a monomial. We
note that the range of A is the vector space of all antisymmetric poly-

nomials and hence the images of all monomials span the range of A.

V.
By Lemma 2.4, A(g(z1, - ,2n)) = FJ' This implies that each anti-

symmetric polynomial is a linear combination of Vs, that is, for any
antisymmetric polynomial f, f = ZC’ V7.
J

LEMMA 2.5. Each symmetric polynomial f(z1,z2,--+,2n) can be
written a polynomial of elementary polynomials ey, --- ,ey.

Proof. We note that the statement is trivially true for N = 1. Let
Clz1, 22, - - , zn] denote the set of all polynomials of N-variables. We de-
fine @ : Clz1, 22,--- , 28] — Clz1, 22, -+ ,2n] by Q(p(21,22,- - ,2n)) =
p(z1,-++ ,2N-1,0). Suppose f is a symmetric polynomial of z1, za, - - - , zn.
Put g(zlv Z2y 7ZN—1) = Q(f(zlv R2y 7ZN)) Then Q(f('zl? R2y° 00
zn)) is also a symmetric polynomial of 21,29, - ,2y-1. By induc-
tion hypothesis, there exists a polynomial p(z1, z9,- -+, zy—1) such that
9(217227"' 7ZN—1) ZP(€1(217"‘ 7ZN—1)762(Z1>"' 7ZN—1)7"' ,€N—1(21,
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- ,2ZN-1)). Define F(z1,22, - ,2n) =plei1(z1, - ,2n-1), - ,en—1(#1,
coan—1)) =9(z1, 22, 2n—1) = Q(f (21,22, -+, 2n)), Q(f (21, 22, - -,
2N)—F (21,22, - ,2n)) =0. Put G(z1, 22, ,2n) = f(21,22, -+ ,2N)—

F(z1,2,--+ ,2n). Since Q(G(z1,22, -+ ,2n)) = G(21,22,- - ,28-1,0)
= 0, zy divides G. Since G is a symmetric polynomial, z122 - 2y (=
en(21,22, -+, 2n)) divies G and hence f(z1, 22, -, 2n)—p(e1(21, 22, - ,
ZN), - sen—1(z1, 22, -, 2n)) = en(z1, 22, 2n) f1(z1, 22, - -+, 2w) for
some polynomial f;. Since degf; < degf— N, by induction on the degree
of f, we obtain fi(z1,22, -+ ,2n) = p1(e1(z1, 22, -+ ,2n), - ,en(z1, 22,
,zn)) for some polynomial py(z1, 22, -, 2n). Since p(ei(z1, 22, -+,
ZN), - sen—1(z1, 22, 2n))+ en(z1, 22, 2N )pi(eo, e (21, 22, -
ZN), -+ ,en(z1,22, -+ ,2N)) is a polynomial of elementary polynomials,
we get the result. O

Suppose (21, 22, - -+ , zn) and (w1, wa, - - - ,wy) arein QY. Then (eq (21,
22yt 7ZN)7"' 76N(Z17Z27"' 7ZN)) - (61(w17w2,"' ,U)N),"‘ ,6N(U)1,
N

N
wa, -+ ,wy)) if and only if H()\ —zj) = H()x —wj) forall A e C

i=1 i=1
if and only if \N —ey (21, 29, - - - ,ZN)/\Nfl-i-' -+ —1)N6N(217Z27 S, 2N)
- )\N - €1<w1,w2, e 7wN))\N_1 +eet (_1)N
all A € C.
Since Sy acts on (C¥)V as o(z1, 20, ,2n) = (20(1)s 20(2)5 " 5 Za(N))

en(wy,wa, -+ ,wy) for

for all ¢ € Sy, it induces an equvalence relation on (CF)V, that is,
(21,22, ,2n) ~ (w1, wy, -+ ,wy) if and only if

o(z1,22, - ,2n) = (w1, wa,--- ,wy) for some o € Sy if and only if
(61(2’1,22, R 7ZN)7 A 76N(217227 . 7ZN)) — (@1(w17w27 . 7wN)7 cee
en(wi,ws,--- ,wy)). Thus {e1,ea,--- ,en} does not seperate V. Since

QN/ is a compact Hausdorff space, span{f(e1,--- ,en)g(e1, -+ ,en) :

~

,g € Clz1, 29, -+, 2n]} seperates points of O . Le = span{ f(eq,
f,geC tes points of @ / . Let E f

€2, ", 6]\[)9(61,62,"' aeN) : fvg € (C[ZbZQ?"' 7ZN]}
By Stone-Weierstrass theorem, E is dense in Cfeq, e, - ,en], where
Cle1,- -+ ,en] is the set of continuous functions.

3. Toeplitz operators

Suppose H is a separable reproducing analytic space on (2 which
contains polynomials. Let K,(w) be a reproducing kernel of H, that is,
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for each f € H, / f(w)K,(w)dV (w) = f(z), where dV is the Lebesque
Q

volume measure. For an orthnormal basis {e,(z)} of H and f € H,
[e.o] [e o]

flz) = Z < f,en > en(z) and hence K,(w) = Zmen(w). Thus

n=1 n=1
K,.(w) = Ky(z). Let C[z] denote the set of polynomials. Given a
complex reqular Borel measure 1 on 2, we define a Toeplitz operator 7T},

with symbol u by T, f(2) = / f(w)K,(w)du(w), f € C[z]. Suppose f
and g are in C[z]. Then N

<Tufig> = /Q T, f(2)g()dV (2)

_ / / (w) K (w)dp(w)g(2)dV (2)
QJQ

- /Q f(w) /Q 9(2) K2 d A dp(w)
- / F(w)g(w)dp(w).
Q

Since the closure of span {wk,@"}kﬂpo = C(D), T,, = 0 if and only if
w=0. -
LEMMA 3.1. Suppose T}, has finte rank N —1. If f € Clz1, 22, , 2N]

and g is an antisymmetric polynomial then / f(z1,22,- ,2n) X
QN

xg(z1,29, - ,zn)du(z1)du(z2) - - - du(zy) = 0.
Proof. Suppose RangeT), = span{Fy, F5,---,Fny_1}. Then for any
N-1
fi € Clz], there is (cj1,cjo,- -+ ,cjv—1)) such that T),f; = Z cjiFy.
i=1

N  N-1 N-1 N
Suppose 0 = 1Ty, fi+- - -+enTufn = Z ¢ Z cjiF;) = Z (Z cjcji) Fi.
j=1 =1 i=1 j=1

N
Since {F}, Fy, -, Fy_1} is linearly independent, chcji =0 for i =
j=1
1,2,---, N — 1. Since the number of equation is less than the num-
ber of unknown, there exists (c1,co, -+ ,cn) # (0,0,---,0) such that
alufi +cTufo + -+ +cenyTyfn = 0. Pick up other N functions
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N N

91,92, -+ ,gn in C[z]. Since chTHfj =0, 0 =< ZCjTufj,gi >
j=1 j=1

fori=1,2,---, N and hence we get a system of linear equations :

ca <Tufi,gr > +ca<Tufo,g1> +-+ +eny <Tufn,g1> =0
a1 <Tufi,92> +ca<Tpfo,g2> +-+ +eny <Tufn,g2> =0

ca <Tufi,gn > +ca <Tpfo,gn > +--+ +en <Tufn,gn > =0

<T/Lflagl> <Tuf2)gl> <T,qu7gl>

Let A = and let A;;

<Tufi,gn > <Tufo,gn > -+ <Tufn,gn >

be the cofactor of A. Since the system has a non-trivial solution, 0 = A
= <Tufi,01 > A+ <Tufi,92 > Aor + -+ < Tpf1,98y > ANt

= ( /Q fiz0g ) An+-+ /Q fi(21)gn (1)) Ay

- /Q Fe) [ ) An g1 At + - - +9x (1) Awi]du(1)

gi1(z1) <Tpfa,g1> -+ <Tufn, 91>
g2(z1) <Tufa,92> -+ <Tufn,g2 >
= [ filz)] " .
Q

dp(z1)

gn(z1) <Tufo,gn > -+ <Tufn,gn >

g1(z1) g1(z2) - g1(2n)
:/Q/Qfl(zl)"’fN(ZN) 92(:21) 92(22) - ga(zn) dp(z1) - du(zy),

gn(z1) gn(22) -+ gn(zN)
where the sixth equality comes from the induction.

g2(z1) g2(22) -+ g2(2N
te.o= [ [ gfj<zj> 5 dpu(z1) -~ dp(z).

gn(z1) gn(22) -+ gn(zn)
For J = (aj,ag,---,ay), where whenever s < t, o) < a! for all

i=1,2,---k let gi(2;) = 2;". Then 0 = / f(2)Vi(2)duN (z). Take
QN
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any antysymmetric polynomial g. Since each antisymmetric polynomial
is a linear combination of Vjs g = >.C;Vy for some C; and hence

| @5 @) =Y [ Vi @) <o, 0

Let £ = Span{f(617627 e ,6]\/')9(61,62, e 76N)} : fag € C[Z17Z27' )
zn| and let C' denote the continuity of the function. Then E C Cley, eo,

,en] and E is dense in Cleq, es.--- ,en]. Since each symmetric poly-
nomial can be written a polynomial of elementary polynomials, for every

F:QN%C(QN)
0= / / er, - en)[Vizr, - o) P)du(zr) - du(e).

Take any continuous function f in C(QV). Let Sf(z1,---,2zn) be the
symmetrization of f. Put F(z1, 29, -+ ,2n) = Sf(z1,22, -+ ,2n). Then

0= / / Sfer o)V o) Pdu(za) - dp(a)

2

e o L [ o o)V o) ) ),
ocESN

Since |V (z1,- -+, 2zn)[> and dpV are both invariant under permutations

of the coordinates, |V (z1,-- -, zn)[?du?Y = 0. Thus p is supported on

the set where V' vanishes. Therefore we have the following :

THEOREM 3.2. Let u be a complex regular Borel measure on §2 which
is a subset of C* and H a separable reproducing analytic space on €
which contains all polynomials. Then T}, has finite rank if and only if ;1
is supported on the finite set, that is, u is a finite linear combination of
point masses.

Suppose p is a complex regular Borel measure on the unit disk D.
For a > —1, the weighted Bergman space A% consists of the analytic
functions in LP(D,dA,), where dAq(z) = (o + 1)(1 — |2[) dA(z) =

1

1
—(a+1)(1 — |2*)"dzdy. Then K(w) = is a reproducing
i

kernel of A2. Then < f, K¢ > = / fw)K¥(w)dA, for all f € A2, A2

is a separable reproducing analytic space and contains all polynomials.
If v is absolutely continuous with respect to dA, then du = @dA, for
some ¢ € LY(D,dA,). If T, has finite rank then {z € D : p(z) # 0}
is a finite set. Since A5, C LP(D,du), p is a Carleson measure on the
weighted Bergman space A%, and hence T}, is a bounded linear operator.




Some properties of Toeplitz operators with symbol p 479

In fact, the measure p is the zero measure and whenever v is a complex
regular Borel measure on the unit disk D and 7}, has finite rank, v is a
finite linear combination of point masses.
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