Commun. Korean Math. Soc. 31 (2016), No. 3, pp. 585-590

http://dx.doi.org/10.4134/CKMS.c150201 pISSN: 1225-1763 / eISSN: 2234-3024

ON 2-HYPONORMAL TOEPLITZ OPERATORS WITH FINITE RANK SELF-COMMUTATORS

An-Hyun Kim

ABSTRACT. Suppose T_{φ} is a 2-hyponormal Toeplitz operator whose self-commutator has rank $n \geq 1$. If $H_{\bar{\varphi}}\left(\ker\left[T_{\varphi}^*, T_{\varphi}\right]\right)$ contains a vector e_n in a canonical orthonormal basis $\{e_k\}_{k\in\mathbb{Z}_+}$ of $H^2(\mathbb{T})$, then φ should be an analytic function of the form $\varphi=qh$, where q is a finite Blaschke product of degree at most n and h is an outer function.

1. Introduction

Let $L^2 \equiv L^2(\mathbb{T})$ be the set of square integrable functions on the unit circle \mathbb{T} . It is well known that $\{e_n(z) \equiv z^n : n = 0, \pm 1, \pm 2, \ldots\}$ forms a canonical orthonormal basis for L^2 . The Hardy space $H^2 \equiv H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n = 0, 1, \ldots\}$. If $f \in H^2$, then f will be called *analytic* and if $f \in L^2 \ominus H^2$, then f will be called *co-analytic*. Let $L^\infty \equiv L^\infty(\mathbb{T})$ be the set of all bounded measurable functions on \mathbb{T} and define $H^\infty := L^\infty \cap H^2$.

Now if $\varphi \in L^{\infty}$, we define $T_{\varphi}: H^2 \to H^2$ by

$$T_{\varphi}g := P(\varphi g) \quad (g \in H^2),$$

where P is the orthogonal projection from L^2 to H^2 . The operator T_{φ} is called a *Toeplitz operator with symbol* φ . If $\varphi \in L^{\infty}$, we define $H_{\varphi}: H^2 \to H^2$ by

$$H_{\varphi}(g) := J(I - P)(\varphi g) \quad (g \in H^2),$$

where J is the unitary operator defined by $J(z^{-n}) = z^{n-1}$ (n = 1, 2, ...). The operator H_{φ} is called a *Hankel operator with symbol* φ .

The following properties follow from the definition:

(1)
$$T_{\varphi}^* = T_{\bar{\varphi}}, \quad H_{\varphi}^* = H_{\tilde{\varphi}} \quad (\text{where } \tilde{\varphi}(z) = \overline{\varphi(\bar{z})});$$

(2)
$$H_{\varphi}T_h = H_{\varphi h} = T_{\tilde{h}}^* H_{\varphi} \quad (\varphi \in L^{\infty}, h \in H^{\infty}).$$

Let \mathcal{H} and \mathcal{K} be infinite dimensional complex Hilbert spaces and let $\mathcal{B}(\mathcal{H},\mathcal{K})$ be the set of all bounded linear operators from \mathcal{H} to \mathcal{K} . We abbreviate $\mathcal{B}(\mathcal{H}) :=$

Received November 1, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B20, 47B35.

 $Key\ words\ and\ phrases.$ Toeplitz operators, finite rank self-commutators, subnormal, hyponormal, 2-hyponormal.

This research was financially supported by Changwon National University in 2015-2016.

 $\mathcal{B}(\mathcal{H},\mathcal{H})$. On the other hand, an operator $T\in\mathcal{B}(\mathcal{H})$ is called normal if the self-commutator $[T^*,T]:=T^*T-TT^*$ is zero and is called hyponormal if $[T^*,T]\geq 0$, i.e., the self-commutator is positive semi-definite. An operator $T\in\mathcal{B}(\mathcal{H})$ is called subnormal if there exists a Hilbert space \mathcal{K} containing \mathcal{H} such that

$$N = \begin{pmatrix} T & * \\ 0 & * \end{pmatrix}$$
 on $\mathcal{K} \equiv \mathcal{H} \oplus \mathcal{H}'$

is normal, i.e., T has a normal extension. In general, it looks so very hard to determine the subnormality of the operator. The Bram-Halmos criterion for subnormality states that an operator T is subnormal if and only if

(3)
$$\sum_{i,j} (T^i x_j, T^j x_i) \ge 0$$

for all finite collections $x_0, x_1, \ldots, x_k \in \mathcal{H}$ ([4], [6, II.1.9]). We can easily show that (3) is equivalent to the following positivity test:

(4)
$$\begin{pmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & \ddots & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{pmatrix} \ge 0 \quad (\text{all } k \ge 1).$$

The condition (4) depends on the size of the matrix. If k = 1, then it is equivalent to the hyponormality of T. If the condition (4) holds for a fixed $k \in \mathbb{Z}_+$, then we say that T is k-hyponormal. For example, the operator $T \in \mathcal{B}(\mathcal{H})$ is 2-hyponormal if

$$\begin{pmatrix} I & T^* & T^{*2} \\ T & T^*T & T^{*2}T \\ T^2 & T^*T^2 & T^{*2}T^2 \end{pmatrix} \ge 0.$$

Many authors have studied the hyponormality and the subnormality of the Toeplitz operators on the Hardy space of the unit circle (cf. [1], [3], [7]-[10], [12], [13]-[15], [16], [19], [22], [23]).

The hyponormality of the Toeplitz operator T_{φ} was characterized in terms of the symbol φ by C. Cowen [8]. This theorem is referred to *Cowen's theorem*: T_{φ} is hyponormal if and only if there exists a bounded analytic function $k \in H^{\infty}$ with norm ≤ 1 such that $\varphi - k\overline{\varphi} \in H^{\infty}$.

On the other hand, we may guess that if an operator T has a finite rank self-commutator, then T enjoys some nice properties (for example, the rank of the self-commutator measures a kind of deviation from the normality). Thus we are tempted to guess that if a "nice" operator has a finite rank self-commutator then it comes to a normal operator. This guess was considered by some authors (cf. [2], [3], [17], [18], [20], [21]). A good candidate of a nice operator may be a Toeplitz operator. Indeed, in [11] and [12], the following question was addressed: If T_{φ} is a 2-hyponormal Toeplitz operator with nonzero finite rank self-commutator, does it follow that T_{φ} is analytic?

In this note we consider 2-hyponormal Toeplitz operators with finite rank self-commutators under some constraint on the kernel of the self-commutators.

2. The main result

We recall that a function $\varphi \in L^{\infty}$ is said to be bounded type (or in the Navanlinna class) if there are functions $\psi_1, \psi_2 \in H^{\infty}$ such that

$$\varphi(z) := \frac{\psi_1(z)}{\psi_2(z)}$$
 for almost all $z \in \mathbb{T}$.

For example, rational functions are of bounded type.

To proceed we first recall:

Lemma 2.1 ([12, Corollary 6]). If T_{φ} is 2-hyponormal and if φ or $\bar{\varphi}$ is of bounded type, then T_{φ} is normal or analytic.

However, the assertion of Lemma 2.1 is not true if the assumption " φ or $\overline{\varphi}$ is of bounded type" is dropped (cf. [11]). Hence we may ask a question: If T_{φ} has a finite rank self-commutator, what do you say about a relationship between 2-hyponormality and normality. In [11] and [12], the authors have addressed the question: If T_{φ} is a 2-hyponormal Toeplitz operator with finite rank self-commutator, does it follow that T_{φ} is normal or analytic? In this note we determine the form of the symbol φ if T_{φ} is a 2-hyponormal Toeplitz operator with finite rank self-commutator and the kernel of the self-commutator satisfies a property.

A function $\theta \in H^{\infty}$ is called inner if $|\theta(z)| = 1$ for almost all $z \in \mathbb{T}$. A finite Blaschke product $b \in H^{\infty}$ is of the form

$$b(z) := e^{i\theta} \prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \overline{\alpha}_j z} \quad (|\alpha_j| < 1).$$

Also a function $f \in H^2$ is called outer if

$$H^2 = \bigvee \{z^n f : n \ge 0\}.$$

Thus f is an outer function if and only if it is a cyclic vector for the shift operator. It is well-known that if f is a nonzero function in H^2 , then there exist an inner function θ and an outer function e in H^2 such that

$$f = \theta e$$
,

which is called the inner-outer factorization of f.

Our main result now follows:

Theorem 2.2. Suppose T_{φ} is a 2-hyponormal Toeplitz operator whose self-commutator has rank $n \geq 1$. If $H_{\bar{\varphi}}\left(\ker\left[T_{\varphi}^*, T_{\varphi}\right]\right)$ contains a vector e_n in a canonical orthonormal basis $\{e_k\}_{k\in\mathbb{Z}_+}$ of H^2 , then φ should be an analytic function of the form $\varphi=qh$, where q is a finite Blaschke product of degree at most n and h is an outer function.

Proof. We first claim that

(5)
$$\varphi$$
 is analytic.

In view of Lemma 2.1, we may assume that both φ and $\overline{\varphi}$ are not of bounded type. To show (5), we assume to the contrary that φ is not analytic. By the same argument as [11, Theorem 8], if we define an operator $A : \operatorname{ran} H_{\overline{\varphi}} \to \operatorname{ran} H_{\varphi}$ by

$$A(H_{\bar{\varphi}}h) = H_{\varphi}h,$$

then we can see that $||A|| \leq 1$, so that A has an extension to H^2 since $\operatorname{ran} H_{\bar{\varphi}}$ is dense in H^2 . In particular, A is one-one since H_{φ} is one-one. Furthermore it was shown in [9] that if U is the unilateral shift then $UA^* = A^*U$. Thus A^* should be an analytic Toeplitz operator (cf. [5]), and hence A is a coanalytic Toeplitz operator, say $T_{\bar{\psi}}$, where $\psi(z) := \sum_{n=0}^{\infty} b_n z^n$. Thus (6) can be written

$$T_{\bar{\psi}}H_{\bar{\psi}}=H_{\varphi},$$

and hence by (2),

(7)
$$H_{\tilde{\psi}\bar{\varphi}} = H_{\varphi}.$$

Write

$$\mathcal{E}(\varphi) = \left\{ k \in H^{\infty} : ||k||_{\infty} \le 1 \text{ and } \varphi - k\overline{\varphi} \in H^{\infty} \right\}.$$

Then by (7), $\varphi - \tilde{\psi}\bar{\varphi} \in H^{\infty}$, which implies $\tilde{\psi} \in \mathcal{E}(\varphi)$ by Cowen's theorem. Since $[T_{\varphi}^*, T_{\varphi}]$ is of finite rank, we have that $\ker [T_{\varphi}^*, T_{\varphi}]$ has finite co–dimension. Also by the hyponormality of T_{φ} , we have that

$$||H_{\bar{\varphi}}h|| = ||H_{\varphi}h||$$
 for all $h \in \ker[T_{\varphi}^*, T_{\varphi}].$

Thus the restriction of T_{ψ} to cl $H_{\bar{\varphi}}(\ker[T_{\varphi}^*, T_{\varphi}])$ is an isometry. Since

$$\operatorname{cl} H_{\bar{\varphi}}(\ker [T_{\varphi}^*, T_{\varphi}])$$

has finite co–dimension, we can choose an orthonormal basis $\{f_k\}_{k\in\mathbb{Z}_+}$ for H^2 such that

$$\operatorname{cl} H_{\bar{\varphi}}(\ker [T_{\varphi}^*, T_{\varphi}]) = \bigvee \{f_k : k \ge r\}.$$

Also we choose a unitary operator $V: H^2 \to H^2$ by

$$Vf_k = e_k \quad (k \in \mathbb{Z}_+),$$

where $\{e_k\}_{k\in\mathbb{Z}_+}$ is a canonical orthonormal basis for H^2 . Then $VT_{\bar{\psi}}V^*$ is also an isometry on $\bigvee\{e_k:k\geq r\}$. By our assumption, there exists $s\in\mathbb{Z}_+$ such that $f_s=e_n$. Thus

$$1 = (VT_{\bar{\psi}}^* T_{\bar{\psi}} V^* e_s, \ e_s) = (T_{\bar{\psi}}^* T_{\bar{\psi}} e_n, \ e_n) = \sum_{j=0}^n |b_j|^2.$$

But since $\tilde{\psi} \in \mathcal{E}(\varphi)$, and hence

$$||\psi||_2 = ||\tilde{\psi}||_2 \le ||\tilde{\psi}||_{\infty} \le 1,$$

that is, $\sum_{j=0}^{\infty} |b_j|^2 \le 1$, it follows that $b_j = 0$ for $j \ge n+1$. Note that $b_0 \ne 0$ because $A \equiv T_{\bar{\psi}}$ is one-one. But since $T_{\bar{\psi}}$ is a contraction, and hence so is $T_{\bar{\psi}}^* T_{\bar{\psi}}$. Thus a straightforward calculation shows that

$$1 \ge ||T_{\bar{\psi}}^* T_{\bar{\psi}} e_n||^2 = \sum_{m=0}^{n-1} \left| \sum_{k=0}^m \bar{b}_k \, b_{n-m+k} \right|^2 + 1,$$

which implies that $b_1 = b_2 = \cdots = b_n = 0$ by a telescoping argument. Therefore ψ is a constant of modulus 1. But since $\tilde{\psi} \in \mathcal{E}(\varphi)$ it follows that φ is of the form $\varphi = \bar{f} + e^{i\theta} f$ for some $f \in H^{\infty}$ and $\theta \in [0, 2\pi)$, which implies that T_{φ} is normal, which is a contradiction. This proves (5).

Now if T_{φ} is a hyponormal operator with finite rank self–commutator, then by an argument of [19, Theorem 10], there exists a finite Blaschke product $k \in \mathcal{E}(\varphi)$ such that

$$\deg(k) = \operatorname{rank}[T_{\varphi}^*, T_{\varphi}].$$

But since φ is analytic, it follows from the Cowen's theorem that $k \bar{\varphi} =: g \in H^{\infty}$ with deg (k) = n. Then $\overline{\varphi} = \frac{g}{k}$, so that $\overline{\varphi}$ is of bounded type and we may write

$$\varphi = \theta \overline{a}$$

where θ is an inner function, $a \in H^2$, and θ and a are coprime. Thus $k\overline{\theta}a = g \in H^{\infty}$, which implies that θ is an inner divisor of k. Let $\varphi := qh$ be the inner-outer factorization of φ , where q is an inner part and h is an outer part. Then we can show that $\deg(q) \leq \deg(\theta)$. Therefore we can conclude that q is also a finite Blaschke product of degree at most n. This completes the proof.

References

- M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597–604.
- [2] A. Aleman, Subnormal operators with compact selfcommutator, Manuscripta Math. 91 (1996), no. 3, 353–367.
- [3] I. Amemiya, T. Ito, and T. K. Wong, On quasinormal Toeplitz operators, Proc. Amer. Math. Soc. 50 (1975), 254–258.
- $[4]\,$ J. Bram, Subnormal operators, Duke Math. J. ${\bf 22}$ (1955), 75–94.
- [5] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89–102.
- [6] J. B. Conway, The Theory of Subnormal Operators, Math. Surveys and Monographs, 36, Amer. Math. Soc. Providence, 1991
- [7] C. Cowen, More subnormal Toeplitz operators, J. Reine Angew. Math. 367 (1986), 215–219
- [8] _____, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, I (J. B. Conway and B. B. Morrel, eds.), Pitman Research Notes in Mathematics, pp. 155–167, Vol. 171, Longman, 1988.
- [9] _____, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812.
- [10] C. Cowen and J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220.

- [11] R. E. Curto, S. H. Lee, and W. Y. Lee, Subnormality and 2-hyponormality for Toeplitz operators, Integral Equations Operator Theory 44 (2002), no. 2, 136–148.
- [12] R. E. Curto and W. Y. Lee, Subnormality and k-hyponormality of Toeplitz operators: A brief survey and open questions, Proceedings of Le Congres International des Mathematiques de Rabat, 73–81, (M. Mbekhta, ed.), The Theta Foundation, Bucharest, Romania, 2003.
- [13] P. Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), no. 3, 489–493.
- [14] D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153–4174.
- [15] C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135–148.
- [16] T. Ito and T. K. Wong, Subnormality and quasinormality of Toeplitz operators, Proc. Amer. Math. Soc. 34 (1972), 157–164.
- [17] J. E. McCarthy and L. Yang, Subnormal operators and quadrature domains, Adv. Math. 127 (1997), no. 1, 52–72.
- [18] B. B. Morrel, A decomposition for some operators, Indiana Univ. Math. J. 23 (1973), 497–511.
- [19] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753-767.
- [20] D. Xia, Analytic theory of subnormal operators, Integral Equations Operator Theory 10 (1987), no. 6, 880–903.
- [21] _____, On pure subnormal operators with finite rank self-commutators and related operator tuples, Integral Equations Operator Theory 24 (1996), no. 1, 106–125.
- [22] D. Yu, Hyponormal Toeplitz operators on H²(T) with polynomial symbols, Nagoya Math. J. 144 (1996), 179–182.
- [23] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376–381.

An-Hyun Kim Department of Mathematics Changwon National University Changwon 641–773, Korea

 $E\text{-}mail\ address: \verb|ahkim@changwon.ac.kr||$