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THE HYPONORMAL TOEPLITZ OPERATORS ON THE
VECTOR VALUED BERGMAN SPACE

YureENG Lu, Puyu Cui, AND YANYUE SHI

ABSTRACT. In this paper, we give a necessary and sufficient condition for
the hyponormality of the block Toeplitz operators Tg, where ® = F4+G*,
F(z), G(z) are some matrix valued polynomials on the vector valued
Bergman space L2(D,C"). We also show some necessary conditions for
the hyponormality of Tpig+ with F 4+ G* € h® ® My xn, on L2(D,C").

1. Introduction

Let D and T be the open unit disk and unit circle in the complex plane C re-
spectively and dA be the normalized Lebesgue area measure on D. h*° denotes
the space of all bounded harmonic functions on D. L (D, dA) and L?(D, dA)
denote the space of essential bounded measurable functions and the space of the
square integrable functions on D with respect to dA, respectively. The Bergman
space L2 consists of all analytic functions in L?(ID,dA). We denote the space of
vector valued square integrable functions on D by L?(D,C") = L?(D, dA) ® C"
and the vector valued Bergman space on D by L2(D,C") = L2 @ C", respec-
tively, where ® denotes the Hilbert space tensor product. In this paper F7
denotes the transpose of the matrix F' and G* denotes the adjoint of the matrix
G.

Let M, «, be the set of all n X n complex matrices. The block Toeplitz
operator with matrix symbol ®(2) = [ (2)]nxn € L®(D,dA) ® M, x, (the
space of matrix valued essential bounded Lebesgue measurable functions on D )
is defined by Toh = P(®h) and the block Hankel operator with matrix symbol
®(z) is defined by Heh = (I — P)(®h), where P is the orthogonal projection
from L?(D,C") onto L2(D,C"). If we set L>®°(D,C") = L>®°(D,dA) @ --- @
L>(D,dA) and L2(D,C")=L2 ®---® L2, then the block Toeplitz operator Tq
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and the block Hankel operator Hg have the following matrix representations :

Ty, Ty, Heyo oo Hy,,
Tp = : : and Hge = : : )
T Ty, He,, H,,,
where
Y11 - Pin
o= I
$nl 0 Pnn

A bounded linear operator A on a Hilbert space is called hyponormal if
A*A— AA* is a positive operator. There is an extensive literature on hyponor-
mal Toeplitz operators on H?(T) (the Hardy space on T)[2, 4, 6, 8, 12]. The
Bergman space is more complex than the Hardy space. So characterizations of
hyponormality of the Toeplitz operators are more difficult, and there are only
some results for the Toeplitz operators with certain symbols [1, 7, 9, 10, 11].
Since H?(T) ® C" shares a lot of nice properties of H?(T), there is also an ele-
gant characterization of the hyponormality of the Toeplitz operators with the
bounded symbols on H?(T)®C" [3, 5]. In this paper, the hyponormality of the
block Toeplitz operators with certain symbols on L2 (D, C") will be discussed.

H. Sadraoui first showed that if f,g € H* (the space of bounded functions
on D), and f’,¢g' € H? (the space of Hardy space on D) such that Tyig is
hyponormal on L2, then |f'(z)| > |¢(z)| almost everywhere on T [11]. Later,
P. Ahern and Z. Cuckovic [1] generalized H. Sadraoui’s result by a mean value
inequality and Berezin transform to the following theorem.

Theorem 1.1 ([1]). Suppose that f,g are holomorphic in D, that ¢ = f 47 is
bounded in D and that T, is hyponormal on L%. Then

li_U%(|f'(z)|2 —19'(2)*) >0 (eT.
z2—
In particular, if f' and g’ are continuous at & € T, then |f'(&)] > |4 (£)].

The condition in the above theorem is not sufficient, but for the Toeplitz
operators with certain trigonometric polynomial symbols and under some as-
sumptions, the condition is also sufficient:

Theorem 1.2 ([10]). Let p(z) = f(z) +@;
9(2) = bp2™ + b2 (0 < m < n) with |a,| < |b
L2 if and only if |f'(2)| > |¢'(z)| on T.

The hyponormality of Ty with ¥ € L>(T)® M,,x, on H?(T)®C" shares the
extensions of Cowen’s result to H2(T) in [2, 5]. But the condition of Cowen’s
Theorem is not sufficiently explicit and is difficult to be verified. There are some
explicit conditions of the hyponormal block Toeplitz operators on H?(T) @ C"
under some extremal condition (see the section 4 in [5]).

where f(z2) = amz™ + anz™,
n|. Then Ty, is hyponormal on
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In this paper, we consider the hyponormality of T with ® = F 4+ G* €
h® ® M, xn- In Section 2, we discuss the hyponormality of Tg with the matrix
with certain polynomials entries symbols. We obtain a necessary and sufficient
condition of the hyponormality of Tg in Theorem 2.6. In Section 3, we obtain
some necessary conditions of the hyponormality of Tp on L2(ID,C") under the
assumption || F||2 = ||G||2. The characterization of normal Ty is complicated.
We also obtain a simple characterization of normal T in Theorem 3.5.

2. Necessary and sufficient condition

In this section, we will discuss the hyponormality of block Toeplitz operators
on L?(D,C") with some trigonometric polynomial symbols.
Let K, (w) = m (z,w € D) be the reproducing kernel of the Bergman

space L? and k,(w) = (11 — Lzl ) be the normalized reproducing kernel in L2.

First the finite sum of two Hankel operator products on L2 is a positive
operator will be discussed. There is the following proposition.

Proposition 2.1. Let fi = apz™ + k2, g = cpz™M + di2V (0 < M <
N), 1 <k < n. Suppose Y ;_, |bp|> < S 1_, |di|>. Then Zzzl(H;ij_k —
H* Hgk) > 0 if and only if Zk L (= )12 > 22:1 |9§c(z)|2 on T.

Proof. We first prove the necessity. Since >, _ 1(H* H — HZ-H_) > 0, we
have

Z ( Hi-Hy — HeHgp k. kz) >
k=1

Note that

M:

(HiHy — Hy Hy ke, k)

~
Il
—

M:

= (D ()P = lar() ks, ka) = D (112 = lan(2)]?).
k=1

B
Il
—

Letting z — £ € T and by [1, Theorem 2], we obtain Y ,_, |fi(z)]*> >
k=1 lgi(2)]* on T.
We now prove the sufficiency.

Let h(z) = Y7 g apzP € Lg with 322 lgjill < 00. We have

NE

(Q_( Hy-Hy-— HgHg: )h, h)

T

b
Il

1

Mg

Zapaq Z H* Hp- — Hy-Hg; )2, 2%)

0 q=0 k=1

p



240 Y. LU, P. CUI, AND Y. SHI

=) Jayl*{ Hg Hg;)z", ")
p=0 k:l
+Zapaq Z H* ~Hy-— Hy-Hap) 2P, 29)
PFq k=1
= Z|O‘p|2<Z(H;kH Hg Hg )2", 27)
p=0 k=1
ZQR@ qpOlp N — MZ arby, — cxdy,)(H- Hon2PTN-M [ sz)]
p=0 k=1
> PO (H Hg Hg )2", 27)
p=0 k=1

oo n
—22|apap+N_M| . ’Z arby — crd) | (Hyn 2PN =M Hoa 2P).
p=0 k=1

Since >0y | fe(2)* > Yr_, 19,(2)* on T, we have
21> arl® = lel®)] + N[ (bkl* = 1dil*)] = 2MN| " (arby — cxdi)].
k=1 k=1 k=1

Note that

NE

() _(HF-Hjy — Hy Hg)z", 2P)

fr

B
Il

1

(Jakl® = lewP) [ Hae 2P | 4 D (1k]* — |dil?) || Hz 2>
1 k=1

I
NE

=
Il

n

Denote n2(p) = (> (H;-Hj — Hg Hgp)z?, 27). The hypothesis Sony |l be* <

k=1
Sor_, | di|? and % > M —2 (see [10]) implies that
1 n n
7 (p) = Nz (M2 “(lak]? = lexl?) + N2> (1be]? = |di|?)] - || Hzn 27|
k=1 k=1
2MN o, —  —
> =5 1> (axbe — cxdy)| - | Hon 2|
k=1
and
1 n
n*(p) > W[MQZ(lakIQ* lex]?) NQZ (Ibx]> = |d|?)] - | Hzne 27 |2

B
Il
—
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2MN
||HEZ\/IZP||2.

Therefore, direct calculation shows that

oo
> layn*(p)

p=0

oo oo

PO Y o)ty Y )
)

N =

N—M-1
p=0 p=N—-M p=N—-M
N—M-1
1
> Dol ®) + 5lapen-n (o + N = M)]
p=0

oo

N
5 Z o *n?(p) + lapsn—re*n*(p + N — M)]
p=N—

l\D

Y

Z loapapr N—n| -n(p) - n(p+ N — M)

o0 n
> 3 lapapin-nl - | Y (arby — cxdi)| - [|Hawz?|| - | Hon 2P V=M
p=0 k=1
o0 n
Z Zlapap+N—]\/f| . ’Z(akbk—ckdk)K NZP+N M HMZP>
p=0 k=1
which completes the proof. (I

The following theorem shows that if T, the Toeplitz operator on L2(D,C")
with harmonic symbol ®, is hyponormal, then ® is normal.

Theorem 2.2. Let ®(2) = F(2) + G*(2) € h° @ Myxn. If To on L2(D,C")
s hyponormal, then ®*(2)®(z) = ®(2)P*(2) almost everywhere on D.

Proof. Denote T' = (Ti;)1';—y = TgTy — TgT4, where Ty = 30 [T Ty, —
Ty, Tz ] Let 2; = (0,...,0,k,0,.. )T (1<i<n). Since Tp is hyponormal,
——
i—1
we get (Ti;k., k.) > 0. Simple calculation implies that
(Tl ik kiz) = ( |fpi|2k2a ko) + fpi(2)gpi(2) + gpi(2) fpi(2) + |gpi(z)|2-
Denote z =1r£, 0 <r <1, £ € T. Letting r — 1, we have

hm(T ol ke k)

Ppi~ Ppi

};Hll<|fp1| k.o k:) +}:Hll[fpi(z)9m( )+gm( )fm( >+|gpi(z)|2]
|2

= |¢pi(¢)
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for almost all { € T, where the second equality follows from the dominant
convergence theorem.

Therefore
hm (T3 kmk Z |‘P;m |‘P1p( |2) >0
p=1
for almost all ¢ € T. Note that
k—1 n
2
— >

71‘1_I>n Zl T” kz,k >+ hm ;1 Tu kZ7k Zl |50kp |¢pk(§)| ) >0

3 z p=

and
n

}E(Tkk ko k) = Z(|<Ppk(§)|2 - |<Pkp(C)|2) = 0.

p=1
Thus we deduce that
lim (T, ke, k) Zl 2ok (O — lerp (1) =0
p—

for almost all ( € T and all 0 < k < n.
Letting ygm = (0,...,0,ck.,0,...,0,k,,0,..)7 c=14,—i,1,—1, we get
—— ——

k—1 m—1

Bn (T bz, k) 2“"’” )@p(i+m) () = Prp(OPirsmp(C)] = 0
p:

forall 1 < k <n,1 <m < n—1.In conclusion, we have that if Ty is

hyponormal, then ®*({)®(¢) = ®(¢)®*(¢) for almost all { € T. Taking Poisson
integral of the above equality, it follows that ®*® = ®®* almost everywhere
on D and the proof is complete. (I

Corollary 2.3. Let ®(z) = F(2) + G*(2) € h®° @ Myxn. If T§Ty — TpTy is
compact on L2(D,C"), then ®*(2)®(z) = ®(2)®*(2) almost everywhere on D.
In the rest of this section, we let ®(z) = F(z) + G*(2) € h® ® My xn. Then
there is the following representation,
TiTy — TyTh = TiTy — Toeo + (Tooe — TpTh) + Tp-o—po-
= 7H:£H(I> + H&;*H&;* + Toro_app~
= H;*HF* — Hé*HG* + Toro_pap~-
By the above equalities and Theorem 2.2, we know that T is hyponormal if
and only if Hjw Hp. — HE Hpw > 0.
In the rest part of this section, we let ®(z) = F(z) + G*(z), where F(z) =
AM 4+ BN G(z) =C2M +D2N(0< M < N), A,B,C,D € M,,«,, and there
is the following matrix representation,

HpHp. — Hi He.
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z::l( i flk H;linglik) z::l( i fnk HglingnQ

Corollary 2.4. Let F = diag| f1,..., fn] and G = diag[ g1,...,gn |. Suppose
fr=apzM b2, g = cpzM +dp2™ (0 < M < N) with |bg| < |di| 1 <k < n.
Then Tpyg- is hyponormal if and only if | f.(2)| > |g;.(2)| on T for 1 <k <n.

Proof. The proof follows from the above matrix representation and the above
proposition. ([l

The following theorem gives a necessary condition for the hyponormal block
Toeplitz operators with harmonic symbols.

Theorem 2.5. Suppose F(z),G(z) € [ H* NCYD) | ® Mpxn. If Trig-
on L2(D,C") is hyponormal, then F'(2)[F*(2)] — G'(2)[G*(2)]" is a positive
semi-definite matriz for all z € T.

Proof. Let © = (c1kz,...,cok.)T (¢; € C,1 < i < n). By the precious the-
orem, we have (Hj.Hp. — HG*HG*ZL' z) > 0. Simple calculation implies

Zp 1 Zq Lt (Oh 1( qu — Hy— Hg—)k.,k.) > 0. By [1, Theorem 2],
we have Zp:l Zq:l CqCp Zk:l[ ok (E)f i (€) — 931 (€)951,(§)] = 0 on T and this
completes the proof. O

The first main result of this paper is the following theorem.

Theorem 2.6. Let ®(2) = F(2)+G*(2), F(z) = Az2M + BN, G(2) = C2M +

N(0 < M < N). Suppose that DD* — BB* is a positive semi-definite matriz
and |( [BA*— DC*}y,y Yo+ [BA* = DC*13,8 )en |} > [( [BA®— DC*]y, 8 )el,
where A,B,C,D € M, xn, { , )cn is the inner product in C" and ,§ € C™.
Then Tg is hyponormal if and only if F'(2)[F*(2)]' — G'(2)[G*(2)] is a positive
semi-definite matriz for all z € T.

Proof. Without loss of generality, we only need to proof the sufficiency for
n=2.

Let y = (hi1,h2)T, where hi(z) = Y0,z with Y20 lu]?/(1 4+ 1) <
00, ha(z) = Y02, Bzt with 2720 18i12/(1 + 1) < oo. By [10, Lemma 2.1],
{Hzn (2F)}52 ) are pairwise orthogonal in L?(D,dA) and {Hzx(zM)}, are
also pairwise orthogonal in L?(D,dA), so

(HpoHpo — HEwHeny, y)

[e%s) 2 2
= > el (aul? = leul) + 18> (lazl* = |exl?)
k=0 =1 =1
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+ 2Re [ Ozkﬂ_ (Eglau — EQlcll> ] } . HHEMZkH2

1w

2 2
+ Z{ o> > " (1bul® = [dul®) + 18k > (1baul® = |dau]?)
k=0 =1

=1

2
+2Re | Z (baby — ddyy) ] }

2
+2 Z Re { aplpin-m Z(ﬁubu —cudu)
k=0 =1

+ BiBrpn—nr Y _(@aibor — Corday)
=1
2

+ By nonr @by — Cudar)
=1

+ BrOk+N— MZ Toibyy — Coyday) } (Hypne 27, How 28N =M
=1
2

o0
= SN (Jawau + Branl® — laxew + Breal® ) - | Han 2|
k=0 =1

e’} 2
£33 (bu+ Bebar® —foudu + Bucaf* ) | a2
k=0 [=1

2
+2 Z Z arai; + Braor) (ks N—abi + Brt N—arbar)

=1

- (akcll + Brea)(aprN—mdu + Besn—mda) |} ( Hpne 2%, How 2FTN M),

By the hypothesis, F'(z)[F*(z)] — G'(2)[G*(2)]’ is a positive semi-definite ma-
trix for all z € T, that means, for any e, es € C, Z E;j(z)eje; >0on T,

where E; ; = szl ipfj{p - gipgjp. It follows that

2
> Ei(2)ee =

4,j=1 p

i,j=1

M

( |€1f{p + €2f§p|2 - |€1g/1p + €2g§p|2) > 0.

1

Simple calculation implies that F'(2)[F*(2)] — G'(2)[G*(z)]’ is positive semi-
definite on T if and only if

2
[M? Z (lerarp + e2a2,|* — |erc1p + e2c2p)
p=1
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2
+ N2 Z (|€1b1p + €2b2p|2 — |€1d1p + 62d2p|2) }
p=1

2
> QMN‘ Z [(e1a1p+e2a2p)(e1b1,+eabay) — (e1c1p+eacay)(erdip+eadsy)] ‘
p=1
Denote

2
e = Y (laxau + Braz|* — |aken + Breal”) - || Hz ¥
=1

2
+ 3 (b + Brbaul? — lads + Byt 2) - || How 2|12
1=1
k2
Since DD* — BB* is positive semi-definite and % > %22, we have
i

2
1 2 2 2
o 272 2 17 {Mm g (Jowar + Brazu|? — |arey + Breal?)

=1

2
+ N2> (lowbu + Bibal* — [andu + Beda|*) }
=1

AMN | & -

= e | Z{ (ka1 + Brax) (arbu + Brba )

=1
— (agen + ﬂk@l)M} |
Similarly, we have
2 2
n 2M N - @@
||HszZkH2 = N2 | ;{ (okar; + Brazr) (kb + Brba )

— (arcu + Brear) (ardi + Brda) } |-
Denote v, = (ax, Br)’ and 6 = (@rzn—a1> Bein_ar)T. We have the following
inequality

NEMNk+N—-M

2
> 2| Z { (wawu + Brazr) (arbu + Brba )
=1
-~ 1
— (areu + Brear) (ardi + Brda) } |2
2

| Z { (kg n—rra1s + BreN—nrazr) (ke N—nrb11 + Brg-n—nrba )
=1

— (hgeN—mcu+ Bren—nrcn) (Qren—rrdu + Bren—rda) } |%
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<H5M Zk, HEN Zk+N_]M>

= 2[{(A% vk, B*yk)c2 — <C*7k7D*7k>C2|%
’ |<A*6kaB*6k>C2 - <C*6k,D (5k>c2| <H—MZ Hen k+N—M>,

Since |( [BA* — DC*]yk, vk )c2 - ( [BA* — DC*]0%, 6y, >C2|% > |( [BA* —
DC*]y, Ok ><C2|,1W6 get [(A* vk, B* )2 — (CF vk, D* i) 2|7 - [(A* 8k, B*6))c2 —
<C*6kaD*5k>C2|§ > |<A*'7k;B*5k>(C2 — <C*7k;D*5k>C2|- So

NkMk+N—M
2

> 2| Z [(ara1r + Brasr) (QrgnN—nrb1i + Bresn—rrbar)
=1

— (aen + Brea) (Qrrn—nmdu + Bepn—nmdar) | | ( Hon 2", How 2
Thus

k+N—-M >

%) N—-M+1 —M— o
> oni= Z i + Z Men-m+ D L
k=0 k=0 k=0 k=2N—-2M
N—M+1 | VM-
= Z i + T3 Z My N MJr Z 77k+— Z s N— M
k=0 k= 2 k=N—M
> annk-i-N—M-
k=0
This completes the proof. ([

Remark 2.7. The assumption that DD* — BB* is positive semi-definite can
not be removed. Let F', G be the diagonal matrices with the matrix entries as
f and ¢ in [10, Remark 2.8] and we get the counterexample.

3. Necessary conditions with | F||2 = ||G||2
For a matrix valued analytic function M € L?(D,dA) @ M xn, let

M(z) = [mij(2)]nxn ZMkz

be the Taylor expansion of M (z). The 2-norm of M is defined by

tT[M]:Mk]

||M||§:/Dt7"[M*(Z)M(Z) JdA(z) =) —— 7
k=0

where tr is the trace of matrix M.

Theorem 3.1. Let ®(z) = F(z) + ®(0) + G*(z) € h*™°(D,dA) @ Mpxn with
IE|l2 = ||Gll2- If Te is hyponormal, then P(tr[F*F — FF*|(z)) = 0.
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Proof. Let hy = (0,...,0,28 4+ ¢,0,...)7, p>1, k>0 and c € C. Since Ty is
——

p—1
hyponormal, then we have (T3Te — TpTahy, hy) > 0, and hence

n

> (Hp.Hpe — Ho Haehp, hp) = > ([ Hpshyl|> = [|Hg=hy||*) > 0.
p=1

p=1
Note that
[ Hphyl? = SO 1H7, 212 + 123 [Tl + Y 2RelcF 0 Hy 25).
g=1 q=1 q=1

By the hypothesis, we arrive

ZZ ||qu”2 = ZZ ||9pq||2-

p=1g¢=1 p=1g¢=1

Therefore,

211%)

M=
M=

(157 1P~ |1y,

1 1

n

+ Z 2Relc(f g H}pqzk> — c(GpqHg,,2")]

3
Il
3 9
Il

p=1q=1
= DD (Hg, 2FIP — 11Hg,, M%) + Y0 2Relel|Fyql” = (1%, 25 2 0.
p=1qg=1 p=1qg=1

Letting |c[ — oo, we get P(ZZ:1 22:1(|qu|2*|gpq|2)) =0, that is P(tr[F"F—
GG*(2) ) = 0. 0

Corollary 3.2. Let F(z) = Yi_, Fiz¥, G(z) = Yop_, Gpz® with ||F|y =
|Gll2. Suppose Trig~ is hyponormal on L2(D,C"). Then

Niqi Noo --- Nipgp %
0 N2 -+ Nroig 3
v= ) . . | =0,
: 0 . : :
0 -+ 0 Nus|l|le

where Ny =tr [FfF — GG, l,k=1,2,...,1.

Proof. By Theorem 3.1, it is sufficient to show that if |F||s = ||G]|2, then the
vector v = 0 if and only if P( tr[F*(2)F(z) — G(2)G*(2)] ) = 0.
Note that
(P(tr[F™(2)F(2) = G(2)G"(2)] ), Kuw)
= (tr[F"F — GG*], Ky)
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I
- (3R kzez Y szzz
k=1 k=1
I I
= (tr]>_ Y (FyFi — GiGy)] 7¥2', Ko)
k=1 1=1
I I
=tr[ > Y (FiF - GiG)](ZF 2 Ky).
k=1 1=1

tr[F} F—GLGY]

By the hypothesis, we know that Zle )

=0, that is, > ;5. L/
0. B

k+1

Lemma 3.3. Let F(z) = [fij]nx'n,,

G(z
Suppose 32 (|3 (E)° — 1954(&)I? ) =
hyponormal, then F'(&)(F*)' () = G'(¢

) = [9is]nxn € [ H®*NC(D) | & Mpxn-
0(1l<p<n)foréecT. IfTpic is
NGT)'(§) for & € T.

Proof. Let x1, = (0,...,0,k,,ck,,0,...)7 (ceC), k> 1.

k—1
Since Hp. Hp. — HE.H > 0, it follows that

n

(Y (Hz H; —Hj Hy k. k)

Frn ' Frn Trp L Thp
p=1
n
+ 2Ret( z;(H Fornn Hro = Hy ) Hy, e )
p:
n
* _ >
Zl f(k+1)p f(k+1)p Hg(k+1)pH9(k+1)p)kz’kZ> 2 0.
p:

By [1, Theorem 2], we have

NIE

(/5 = 1gkp ()*)

p=1
+2Rec | Z (k+1)p fkp §) — 92k+1)p(€)9§cp(f))]
p=1
+ Z |f(k+1)p |g£k+1)p(§)|2) >0 for§eT.
p=1

It follows that 2REZ[Y" (fhe 10 ()Fhy () = Ghs1)y (E)ghp (€] = 0.
Taking ¢ = 1, —1, 4, —i, it implies

S iy O Fp () = Gty 1)p(E)ghp(€)) = 0

=1

S|
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for ¢ € T. Similarly, letting yxm = (0,...,0,k,,0,...,0,ck,,0,...)7, k& >
S—— ~——

k—1 m—1

1,m > 1, we have F'(&)(F*)' (&) = G'(&)(G*)'(§) for £ € T. O
The second main result of this paper is the following theorem.

Theorem 3.4. Let F + G* € h™° ® M, «n, with F(0) = G(0) = 0p,xn. Suppose
|Fll2 = ||Gll2 and F',G' € H?> @ Mpsxn. If Trig+ is hyponormal, then
(1) F(2)F*(z) = G(2)G*(z) almost everywhere on D, and
(2) F*(2)F(z) = G*(2)G(z) almost everywhere on D.
Proof. (1) Let x, = (0,...,0,1,0,...)7,p > 1. Since Triq~ is hyponormal,
——

p—1
it follows that 22:1 | fpall® > 2221 |gpqll>. Note that ZZ:1 22:1 | fpall* =

ZZ:l 22:1 [|gpqll®. Hence ZZ:l Il fpall? = ZZ:l llgpall>-

The following familiar Green’s identity is from [1],

/D(dA—u /Au dA(2),

where u(z) € C?(D) N LY(D,dA), K(z) = log = e — (1 —z[?) > 0 for z € D.
Direct calculation implies that

0= Z prq”2 - Z ||9pq||2
qg=1 q=1
= [ 1l = X o) a2
D .o =1

= 15" Ufyal? = lopal®)(0) + / A (Fyal? = lapal®) (2] (2) dA(2)

q=1
0+/D[Z(|f;ql2 —19pq*) (2)]K () dA(2).
qg=1
Let y, = (0,...,0,k.,0,...)7, p > 1. Since Tpig+ is hyponormal, by [1,
p—1

Theorem 2], it follows that lim,_,¢er Zgzl[|f;q|2 —1g5gI°1(z) 2 0

i, —scer an;qﬁ ~ g2,
= lim.¢er lim Z — l(gpg)"*1(2)
g=1

= hm hmz_%eqrz gpq) |2](Z)
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n

=2 [1(f)" 2 = 1(g3)" 216

Z |qu — |9pql 2)(¢)  for almost all ¢ € T,
a=1

where f7(z) = f(rz) (0 <r < 1) for all z € D. Taking the Poisson integral of
the above equality, it follows that Y~/ (| f,,|* —19p|?)(2) > 0, this implies that

Zgzl(|f;q|27|gj’gq|2)( ) = 0 for almost all z € D. Denote f;,(z) = Y32, a,ipq)zk

and fé\q( = a z*. The above equality is equal to

Zlenq(z> (z ngq gpq =0 ae on D.
q=1

It follows from a well-known result in several complex variables (that is, if
f(z,w) is holomorphic in D x D and f(z,Z) = 0, then f(z,w) =0 for (z,w) €
DxD ), then

Zf;l)q(z)/zl)\q(w) - Zg;q(Z)g/’;z(w) =0 a.e. on DxD.
q=1

q=1

So

Z Z Gpg (1 gpq
v) - ngq<z>g';<v>
Z Z gpq gpq

f qu Z gpq gpq

M:\
—

1

=]
Il

w

I
S~

I
M:

=]
Il
N

Thus Y50 [ fpel®(2) = 20— |9pel*(2) (p > 1) for almost all z € D. By Lemma
3.3 and the previous proof, we get F(z)F*(z) = G(z)G*(z) for almost all z € D.

(2) Note that (F+G*)(F*+G) = (F* + G)(F + G*). Taking Laplace trans-
form A of the above equality, we get F'(2)F"™*(2)—G'(2)G"™(z) = F"™*(2)F'(z)—
G (2)G'(z). Using a similar argument as in the proof of (1), one can prove the
conclusion. O

The following corollary generalizes [10, Theorem 3.3].

Theorem 3.5. Let F + G* € h™° ® M, «n, with F(0) = G(0) = 0p,xn. Suppose
IFllz2 = |Gll2, F',G' € H> ® Myxy, and detF, detG are not identically zero.
Then the following statements are equivalent:
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(1) Tryg+ on L2(D,C™) is hyponormal,
(2) Trig- on L2(D,C"™) is normal,
(3) there exists a constant unitary matriz U such that F(z) = G(z)U.

Proof. (2) = (1) is trivial.
(3) = (2). Since

HpoHp. — HiHe.e = Higy Higyy, — Ho He.
= Hj.g-Hy.. — He Hg
— H} (U*) Hyuge — He He
= H;.UU*Hg. — Hi Hg. = 0,

we get Tpyg+ is normal.

(1) = (3). By Theorem 3.4, it follows that F(z)F*(z) = G(z)G*(z) for
almost all z € D. Since det F, det G are not identically zero analytic functions,
we have G71(2)F(z) = G*(2)(F*)71(2). Note that G~!(2)F(z) is analytic
and G*(2)(F*)~!(z) is co-analytic. So there exists a constant matrix U such
that G71(2)F(z) = G*(2)(F*)"Y(z) = U. Therefore F(z) = (UF*(2))*U =
F(2)U*U and G*(z) = U(G(2)U)* = UU*G*(z). Hence U is a unitary matrix
and hence F(z) = G(z)U.

(I
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